7 STAR
STAR Offline Library Long Writeup

SiEven

User Guide and Reference Manual

for Version 2

Revision: 2.80
Date: 2004/03/30 15:59:43

CONTENTS CONTENTS

Contents
1 Introduction 1
| User Guide 2
2 Basics 3
21 HeaderFiles 3
2.2 Enumerationsand Constants 3
2.3 CoNVentions 6
2.3.1 NumberingScheme 6
2.3.2 Referencesand Pointers 7
233 UNitS . . . 7
2.4 Persistenceand ROOT 9
25 Containerand Iterators 10
2.6 Getting StEvent: The StEventMakero 12
2.7 A Standard Example: doEvents.C and StAnalysisMaker 14
2.8 Further Documentation 15
3 The StEvent Model 16
3.1 EventHeader 16
3.2 Software MoONitors 17
3.3 Triggerand Trigger Detectors e 19
34 Tracks ..o 20
341 Introductionto Tracks 20
3.4.2 The Conceptofthe Track Node 21
3.4.3 Detector Information 22
344 TheTrack Classes 23
345 TPTTracks o o 25
346 PIDTraitS o o 25
3.4.7 PID Algorithm, Filtersand Functors 28
35 Vertices 31
36 Hits . . 32
3.6.1 TPCHhIts 33
362 FTPChIts o 34
3.6.3 SVThits 34

CONTENTS

CONTENTS

3.6.4 SSD hits
3.7 Remarks on Hits and Vertices
3.8 TheEMC
3.9 The PHMD
3.10 TheRICH
3.11 The L3 Trigger

3.11.1 Event Summary Information

3.11.2 Algorithm Information

4.1 The StEventScavanger class
4.2 An Example: StMiniDstMaker

4.3 Advanced features

431

4.3.2 Adding user defined classes

Il Reference Manual

5 Class References

5.1 StBbcTriggerDetector
5.2 StCalibrationVertex
5.3 StContainers
5.4 StCtbSoftwareMonitor
5.5 StCtbTriggerDetector
5.6 StDedxPidTraits
5.7 StDetectorState
5.8 StEmcCluster
5.9 StEmcClusterCollection
5.10 StEmcCollection
5.11 StEmcDetector
5.12 StEmcModule
5.13 StEmcPoint
5.14 StEmcRawHit
5.15 StEmcSoftwareMonitor
5.16 StEnumerations
5.17 StEmcTriggerDetector

Writing MiniDSTs using StEvent

Using Zombies

CONTENTS CONTENTS

5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52

SEveNt . . 71
StEventinfo 76
StEventScavenger 77
StEVENtSUMMANY e e 78
StEVENTTYPES . . . o o o e e 80
StFpdCollection 81
StFtpcHIt. . . . o 82
StFtpcHitCollection 83
StFtpcPlaneHitCollection 84
StFtpcSectorHitCollection 85
StFtpcSoftwareMonitor 86
StRunctional 87
StGlobalSoftwareMonitor 88
StGlobalTrack 89
StHelixModel 90
StHIt . . o 91
SIKINKVertex 92
SILOTFIQOEr . . v o o o e e e e e e 93
SILATRQUEr . . o o o o e 94
StL3AlgorithmiInfo 95
StL3EVENISUMMANY o o e e e 96
StL3SoftwareMonitor 97
SIL3THIQUEr . . o o o o 98
StMeasuredPoint. L 99
StMwcTriggerDetector L 100
StPhmdCIuster 101
StPhmdClusterCollection 102
StPhmdCollection 103
StPhmdDetector 104
StPhmdHIt 105
StPhmdModule 106
StPrimaryTrack 107
StPrimaryVertex 108
SIPSA . . . 110
StRichCluster 111

CONTENTS CONTENTS

553 StRichCollection. 112
554 StRichHit 113
555 StRIChMCHIt 115
556 StRichMCInfo 116
557 StRichMCPixel e 117
5,58 StRichPid 118
559 StRichPidTraits 120
5.60 StRichPixel 122
5.61 StRichSoftwareMonitor 123
5.62 StRichSpectra 124
563 StRunInfo 126
5.64 StSoftwareMonitor 128
5.65 StSsdHit 129
5.66 StSsdHitCollection 130
5.67 StSsdLadderHitCollection 131
5.68 StSsdWaferHitCollection 132
5.69 StSvtBarrelHitCollection 133
570 SESVEHIt 134
571 StSvtHitCollection. 135
5.72 StSvtLadderHitCollection 136
5.73 StSvtSoftwareMonitor 137
5.74 StSvtWaferHitCollection 138
575 StTofCell 139
576 StTofCollection 140
5.77 StTofData e 141
578 StTofHit 142
579 StTofMCCell e 143
580 StTofMCHIt 144
581 StTofMCInfo 145
5.82 SITOfMCSIat 146
5.83 StTofPidTraits 147
584 StTofSlat 148
5.85 StTofSoftwareMonitor 149
5.86 StTpcDedxPidAlgorithm 150
587 StTpcHIt 151

CONTENTS

CONTENTS

5.88 StTpcHitCollection
5.89 StTpcPadrowHitCollection
5.90 StTpcPixel
5.91 StTpcSectorHitCollection
5.92 StTpcSoftwareMonitor
5.93 StTptTrack
5.94 StTrack
5.95 StTrackDetectorInfo
5.96 StTrackFitTraits
5.97 StTrackGeometry
5.98 StTrackNode
5.99 StTrackPidTraits
5.100 StTrackTopologyMap
5.101 StTrigger
5.102 StTriggerData
5.103 StTriggerData2003
5.104 StTriggerDetectorCollection
5.105 StTriggerld
5.106 StTriggerldCollection
5.107 StVOVertex
5.108 StVertex
5.109 StVpdTriggerDetector
5.110 StXiVertex
5.111 StZdcTriggerDetector

A Brief Introduction to UML
A.1 Introduction
A.2 Class diagrams
A.3 Composition Relationships
A.4 Inheritance
A5 Aggregation and Association
A.6 Dependency

CONTENTS

CONTENTS

Vi

1 INTRODUCTION

1 Introduction

This document contains the User Guide and Reference Manual for StEvent version 2. Like the new ver-
sion of StEvent this documentation is a complete rewrite and supersedes all documentation with revision
number 1.xx. All code and documentation for the new version has a cvs version number of greater or equal
2.00.

In this document more emphasis is put on the User Guide while the Reference Manual part is kept shorter in
terms of description of usage. As StEvent changes this document will change accordingly and you should
always check that the revision number of the document matches the one in the repository.

Version 2 of StEvent contains significant changes as compared to the previous versions. Part of the changes
were made to cope with the modification of the DST format in Fall of 1999, others were made to overcome
shortcomings in the previous implementation. This version is also more flexible in terms of extendibility to
allow future track and vertex models to be incorporated easily. The current implementation is also meant
to be used further upstream of the analysis, i.e. in the reconstruction phase. As a consequence the model
itself became slightly more complex in terms of navigation and structuring.

In order to explain the model in practical terms many diagrams and plots were included in this document.
Some of them show class diagrams using the Unified Modelling Language UML. A brief introduction to
UML is given in Appendix A.

IR0
E e

=

Figure 1.1: The task of the software development team is to engineer the illusion of simplicity.

Part |
Usar Guide

2 BASICS

2 Basics

2.1 Header Files

The amount of header files included in the StEvent classes was minimized to decrease dependencies be-
tween the various classes and where ever possible forward declarations were used. This is especially true
for the St Event class itself and it is therefore not sufficient to include St Event . h only. Many more
header files would have to be included. This is very good for the developers since turnaround times are
minimized but obviously bad for the users for it would be very cumbersome to each time figure out which
header files one might need and which not. Therefore are all header files which are needed to use every
little bit of StEvent contained in one single header file named St Event Types. h. The disadvantage of
this approach is that every time one StEvent class changes you have to recompile all your code, even if the
changed class is not used. This, however, should not happen too often and it by far more convenient to deal
with on header file only.

To summarize: All you need when using StEvent is to include St Event Types. h and you are all set.

2.2 Enumerations and Constants

StEvent uses a lot of enumerations for all types of purposes. This is much more type-safe then using
simple integer numbers and makes the code more readable. All enumerations used in StEvent are defined
in St Enumrer at i ons. h. For users convenience some non-StEvent header files as St Det ect or | d. h,
St Vert exl d. h and St Tr ackMet hod. h are also included therein. To remind you of the names and

Figure 2.1: Strong typing avoids mixing abstractions.

save you the time to look them up up every you need one they are all listed below:

enum St BeanDi recti on {east =0

2.2 Enumerations and Constants

2 BASICS

enum St BeanPol ari zati onAxi s {transverse,

enum St Char geSi gn
enum St Tr ackType
enum St Tr ackModel

enum St Detectorld

enum St Vertexld

enum St DedxMet hod

| ongi t udi nal };

{negative, positive};

{gl obal, primary, tpt,

{hel i xMbdel , kal manModel };

{kUnknownl d,
kTpcl d,
kSvt | d,
kRi chl d,
kFt pcWest | d,
kFt pcEast | d,
kTof 1d,
kCt bl d,
kSsdl d,
kBarr el EncTower | d,
kBar r el EncPreShower | d,
kBarrel SmdEt aStri pld,
kBarrel SmdPhi Stri pld,
kEndcapEntTower | d,
kEndcapEntPr eShower | d,
kEndcapSndEt aStri pl d,
kEndcapSndPhi Stri pld,
kzZdcWwest 1 d,
kZdcEast 1 d,
kMwpcWest | d,
kMwpcEast | d,
kTpcSsdl d,
kTpcSvt i d,
kTpcSsdSvt 1 d,
kSsdSvt I d,
kPhndl d,
kPhndCpvl d} ;

{kUndef i nedVt xI d,
kEvent Vt xI d,
kVOVt xI d,
kXi vt xI d,
kKi nkVt x1d,
kQ her Vt xI d} ;

{kUndef i nedMet hodl d,
kTruncat edMeanl d,
kEnsenbl eTruncat edMeanl d,
kLi kel i hoodFi t I d,
kWei ght edTr uncat edMeanl d,

secondary};

2 BASICS 2.2 Enumerations and Constants

k& her Met hodl d} ;

enum St TrackFi tti ngMethod {kUndefinedFitterld,
kHel i x2St epl d,
kHel i x3Dl d,
kKal manFi t1d,
kLi ne2St epl d,
kLi ne3DI d
kL3Fi t1d};

enum St Tr ackFi nder Met hod {svt G ouper,
svt St k,
svt O her,
t pcSt andar d,
t pcQ her,
ft pcConf or nal ,
ftpcCurrent,
svt TpcSvm
svt TpcEst,
svt TpcPatt ern,
| 3St andar d} ;

enum St Ri chPi dFl ag {eNoM p,
eFast Enough,
eLi ght OnPadPI ane} ;

enum St Ri chHi t Fl ag {eDeconvol ut ed=1,
eM p=2,
eSat ur at edPad=4 ,
ePhot oEl ect r on=8,
eMul ti pl yAssi gnedToRi ng=16,
eAssoci at edM p=32,
elSi gnaPi =64,
e2Si gnaPi =128,
el nConst ant Ar eaPi =256,
el nAreaPi =512,
eAssi gnedToRi ngPi =1024,
elSi gnakK=2048,
e2Si gnakK=4096,
el nConst ant Ar eakK=8192,
el nAreakK=16384,
eAssi gnedToRi ngk=32768,
elSi gnap=65536,
e2Si gnap=131072,
el nConst ant Ar eap=262144,
el nAreap=524288,
eAssi gnedToRi ngp=1048576} ;

enum St Pwg {generic,
ebye,
hbt ,
hi ghpt ,

2.3 Conventions 2 BASICS

pcol |,
spectra,

spi n,
strangeness};

Note that often the enumeration type names (e.g. St Tr ack Ty pe) are used as argument types. The strong
C++ type checking rules ensures the proper use of the enumeration constants already during compilation.

Another important set of constants should be mentioned here as well, namely the physical constants de-
fined in Physi cal Const ant's. h. There are too many to be listed here but you should make your-
self familiar with what constants are available. You will find the header file in the StarClassLibrary (see
Sec. 2.8). In order to define the units of the various physical constants another set of constants defined in
Syst enOf Uni t s. hisused (also from StarClassLibrary). The latter is described in section 2.3.3.

2.3 Conventions
2.3.1 Numbering Scheme

All numbering follows strictly the C/C++ convention, i.e. the first element in an array has the index 0.
This is valid for all container, collections and lists. Here it is important to remember that many (but not
all) official STAR numbering schemes start counting at 1. Examples are TPC sectors and padrows, SVT
barrels, layers, ladders and wafers. Do not forget to subtract 1 when using this scheme for addressing
elements in a container.

TPC, SVT and FTPC hits return their hardware address in STAR units. In order to select the hit container
in which a hit h is stored you must write:

evt->tpcHi t Col | ection()->sector(h.sector()-1)->padrowh. padrow()-1).hits();

Many of STARs numbering schemes were defined when FORTRAN was the main programming language
and C/C++ played only a minor role. Again, the only place where you have to deal with these conventions
is when you use one of the following methods:

e St TpcHit::sector()

e St TpcHit: : padrow()

e StFtpcHit::sector()

e StFtpcHit::plane()

e StSvtHit::layer()

e StSvtHit::ladder()

e StSvtHit::wafer()

e StSvtHit::barrel ()

e St TrackTopol ogyMap: : hasHi t I nRow(i nt)

e St TrackTopol ogyMap: : hasHi t I nSvt Layer (i nt)

See the corresponding reference sections for more.

2 BASICS 2.3 Conventions

2.3.2 References and Pointers

Many methods (or member functions) or StEvent classes return objects by reference or by pointer. This
is sometimes confusing but there is a idea behind this. Whenever an object is returned by reference it is
guaranteed to exist. No questions asked. If the object is a container it might be empty, i.e. it has zero
size, but you ask for it you get it. Objects returned by pointer, however, are not guaranteed to exist. You
might get a NULL pointer back. It is always a good idea to check if you really get what you asked for.
Dereferencing a NULL pointer can be painful.

As you will see in the reference section many methods are provided in two versions: a constant and a
non-constant version. Don’t worry about the differences. The compiler will always choose the proper
version.

2.3.3 Units

All physics quantities in StEvent are stored using the official STAR units: cm, GeV and Tesla. Angles are
given in radians® In order to maintain a coherent system of units it is recommended to use the definitions
in Syst enOf Uni t s. h from the StarClassLibrary. They allow to *assign’ a unit to a given variable by
multiplying it with a constant named accordingly (centimeter, millimeter, kilometer, Tesla, MeV, ...). The
constants ensure that the result after the multiplication follows always the STAR system of units.

The following example illustrates their use:

doubl e a = 10*centi neter;
double b = 4*millineter;
doubl e ¢ = 1*i nch;

double E1 = 130*MeV;
double E2 = .1234*&V,

/1

/1 Print in STAR units

/1

cout << "STAR units:" << endl;

cout << "a = " << a << " cn' << endl;

cout << "b =" << b << " cnm' << endl;

cout << "¢ = " << ¢ << " cnm' << endl;

cout << "E1 =" << E1 << " @GV' << endl;

cout << "E2 =" << E2 << " @&V' << endl;

/1

/1 Print in personal units

/1

cout << "\'nMy units:" << endl;

cout << "a =" << a/millinmeter << " mt' << endl;
cout << "b =" << b/mcroneter << " unf << endl;
cout << "¢ =" << c/nmeter << " nf << endl;

cout << "E1 =" << E1/TeV << " TeV' << endl;
cout << "E2 = " << E2/keV << " keV' << endl;

The resulting printout is:

INote, that here StEvent deviates from STAR guidelines where degrees are declared the official units.

2.4 Persistence and ROOT

2 BASICS

STAR units:

10 cm

0.4 cm

c 2.54 cm

El = 0.13 GV
E2 = 0.1234 GeV

a
b

My units:

a 100 nm

4000 um
0.0254 m

0. 00013 TeV
123400 keV

b
C
El
E2

Further documentation can be found in the StarClassL ibrary manual (see Sec. 2.8).

2 BASICS 2.4 Persistence and ROOT

Figure 2.2: Persistence saves the state and class of an object across time or space.

2.4 Persistence and ROOT

All StEvent classes inherit from St Obj ect which itself inherits from TCbj ect . During the build of
StEvent all classes run through r oot ci nt . This adds the following features:

1. All StEvent classes can be used on the r oot 4st ar command line.

2. Almost all StEvent classes are persistent capable, i.e. they can be stored in ROOT files.

As usual each coin has two sides. The disadvantage of this is that we cannot use some features of the
ANSI/ISO C++ and from the Standard C++ Library as:

e type bool
e templates
e STL containers and algorithms

® Nnamespaces

This however applies for the header files only. Source files are not processed via r oot ci nt and therefore
all the stuff mentioned above can be used. And indeed in the implementation of various StEvent classes
we make heavily use of the STL.

ROOT uses typedefs for the built-in standard C++ types. This is pretty confusing but has a good reason
when it comes to persistence. This way one can guarantee the same size (humber of bytes) for the types
independent of the platform. The ANSI/ISO standard only requires that: char <short <int <l ong
<long longandfl oat <doubl e <long doubl e.

The types used in StEvent are defined as follows:

2.5 Container and lterators 2 BASICS

typedef char Char _t; /1 Signed Character 1 byte
typedef unsigned char UChar t; /1'Unsi gned Character 1 byte
typedef short Short _t; /] Si gned Short integer 2 bytes
typedef unsigned short UShort t; /1'Unsigned Short integer 2 bytes
typedef int Int _t; /1 Signed integer 4 bytes

t ypedef unsigned int unt t; /1 Unsi gned integer 4 bytes
typedef | ong Long t; /1 Signed |ong integer 4 bytes
typedef unsigned | ong ULong_t; /1'Unsigned |l ong integer 4 bytes
typedef fl oat Fl oat _t; /1 Float 4 bytes

typedef doubl e Doubl e_t; /1 Float 8 bytes

t ypedef unsigned char Bool t; / 1 Bool ean

Note that since April 2001 the type | ong (Long_t) is not supported by ROOT any more and cannot be
used for declaration of persistent data members.

This is fine and good but there is absolutely no reason to use them in code and function declarations. Even
worse this can have disadvantages when it comes to calls to system functions and speed. It also makes code
less portable and readable. Don’t use them only because you see them used in StEvent. They are only
used for the declaration of the persistent data members.

2.5 Container and lterators

Version 2 of StEvent comes with a new naming scheme for containers. All containers used in StEvent
store objects by pointer. Technically they are all vectors and therefore allow random-access as in

pointer_to_object = container[i];

that is they are ordered collections. There are two different types of containers, so called structural and
non-structural containers. What that means is rather simple. Structural containers own the objects they
contain the others not. If you delete a structural container all objects stored in it get deleted as well.

o All structural vectors which store pointers carry the prefix St SPt r Vec.

o All other vectors which store pointers carry the prefix St Pt r Vec.

That’s simple. To complete the name we append the type of objects they contain and we are done. Hence
a structural container which holds objects (or better pointer to objects) of type St Tr ackNode is hamed
St SPt r VecTr ackNode. The St prefix of the class is always omitted.

In practice it makes little difference if you are using a structural or non-structural collection. Their interface
is the same and they act they same. The secret lies in their implementation. If you create a container by
your own you should always use the non-structural containers. Those you can create and delete without
doing StEvent any harm. Never delete a structural container unless you stand with your back to a wall and
a sharp knife on your throat.

All containers used in StEvent are defined in the St Cont ai ner s. h header file and are based on
St Ar r ay which was written by Victor Perevoztchikov. Currently the following containers are in use:

St PtrVecHi t

St Pt r VecTr ack

St PtrVecTrackPi dTraits
St SPtr VecFt pcHi t

10

2 BASICS 2.5 Container and lterators

St SPt r VecKi nkVert ex

St SPt r VecPri mar yTr ack
St SPt r VecPri mar yVert ex
St SPt rVecSvt Hi t

St SPt r VecTpcHi t

St SPtr VecTr ack

St SPtrVecTrackDet ectorlnfo
St SPt r VecTr ackNode

St SPtrVecTrackPi dTraits
St SPt r VecVOVert ex

St SPtr VecXi Vert ex

All containers are based on modified ROOT collections. They allow to make StEvent persistent. They
good thing with St Ar r ay is that all those containers offer an almost ANSI/ISO compatible interface.
This means that both container classes provide the essential methods listed below. Replace Cl assNane
with any StEvent class one might find in a container.

Public St Pt rVecd assName() ;
Constructors St SPt r Vecd assNane() ;
Constructs an instance with zero length.

St Pt r VecCl assNane(unsi gned int nelem;
St SPt r Vecd assName(unsi gned i nt nel en);
Constructs an instance with length nel em

St Pt rVecCl assNane(const St PtrVecC assName& vec) ;
St SPt r Vecd assNanme(const St SPt rVecC assNanme& vec) ;
Copy constructor. Structural containers copy also the objects they contain.

Public Member voi d push_back(const StC assName *pobj);
Functions Adds object pointed to by pobj . If the container is not large enough it will auto-
matically resize.

unsi gned int size() const;
Returns the current size of the container, i.e. the number of stored elements.

voi d resi ze(unsigned int nelem;
Resizes the collection to size nel em

void clear();
Deletes all elements. If the container is a structural container all objects it holds get
deleted.

bool enpty() const;
Checks for zero size.

const StPtrVecC assNanelterator begin() const;
const St SPtrVecC assNanelterator begin() const;
Returns iterator to the the first element in the collection.

const StPtrVecd assNanelterator end() const;
const St SPtrVecC assNanelterator end() const;
Returns iterator to the the last+1 element in the collection.

void erase(StPtrVecC assNanelterator iter) const;

voi d erase(St SPtrVecCl assNanelterator iter) const;
Deletes element referred to by iterator i t er . If applied to structural containers the
object gets also deleted.

11

2.6 Getting StEvent: The StEventMaker 2 BASICS

Public Member St G assNanme* & operator[] (unsigned int i);
Operators Returns the pointer to the i 'th element where i runs from 0 to si ze() - 1.

There are many more than one can describe here. If you want to learn more you better have a look at the
St Arr ay. h source code.

Needless to say that every container comes with two iterators, a constant and a non-constant version. The

name of each iterator is composed of the name of the container and the suffix | t er at or orConst I t er at or.
Example: For the structural container St SPt r Vec Tr ackNode the iterators St SPt r Vec Tr ackNodel t er at or
and St SPt r VecTr ackNodeConst | t er at or are defined. Iterators care if they iterate over structural

or non-structural containers so there are different iterators for St SPt r Vec Tr ackNode and St Pt r VecTr ackNode
containers.

We already mentioned that all containers are ordered vectors, hence the two methods to iterator/loop over a
collection work both as well. It’s a matter of taste which one you choose, although the iterator version has
some advantages and is somewhat safer.

St Pt r VecTrack contai ner;
float x;

\\ nmethod 1
for (unsigned int i=0; i<container.size(); i++)
X = container[i]->length();

\\ method 2
for (StPtrVecTracklterator i = container.begin(); i != container.end(); i++)
X = (*i)->length();

A warning at the end. Although St Ar r ay provides a interface compatible with the Standard C++ Library
(former STL) it is not guaranteed that the standard algorithms will work (sort, accunul at e, copy,
fi nd,...). You better check this from case to case. Don’t say you haven’t been warned.

For your own analysis (or reconstruction) code you might use the standard STL containers together with
StEvent provided that you classes are not processed via r oot ci nt . Since STL containers are transient
they are more efficient if speed and use less memory if this is your concern.

2.6 Getting StEvent: The StEventM aker

StEvent is set up and filled in a “maker” with the name St Event Maker . This maker reads DST tables
stored in memory and does all the things to make StEvent nice and useful. How the DST gets into memory
is another story and is explained in the next section (2.7). In principle all you have to do is to make sure
that St Event Maker is in the chain and called at the right place and at the right time. The only public
data member and the two methods you should be aware of are:

Public Data bool doLoadTpcHits;
Member Controls if TPC hits should be loaded (default=k TRUE).

bool doLoadFtpcHits;
Controls if FTPC hits should be loaded (default=kTRUE).

bool doLoadSvtHits;
Controls if SVT hits should be loaded (default=kTRUE).

bool dolLoadTpt Tr acks;
Controls if TPT tracks should be loaded (default=kFALSE).

12

2 BASICS

2.6 Getting StEvent: The StEventMaker

Public Member
Functions

bool doPrintEventlnfo;

Print or do not print info on the current StEvent event. (default=kFALSE). This
produces a lot of output. Every major class is dumped, the sizes of all collections,
and the first element in every container. Don’t use it for production.

bool doPrint Menoryl nfo;

Switch on/off checks on memory usage of StEvent (default=kFALSE). In order
to get a memory snapshot we use St Menor ylI nf o from the StarClassLibrary. A
snapshot is taken before and after the setup of StEvent. The numbers in brackets
refer to the difference. Not available on SUN Solaris yet.

bool doPri nt Cpul nf o;
Switch on/off CPU usage (default=kFALSE). Tells you how long it took to setup
StEvent. Timing is performed using St Ti ner from the StarClassLibrary.

St Event* event();
Returns a pointer to the current St Event object.

And don’t forget to check if you got a NULL pointer. If something went wrong this might be the case.
Something else should be mentioned here: Do not delete the St Event object you get through these
method. It wl be automatically deleted by the system once you read-in a new event.

13

2.7 A Standard Example: doEvents.C and StAnalysisMaker 2 BASICS

2.7 A Standard Example: doEvents.C and StAnalysisM aker

In order to get started it is always a good idea to study a simple example which shows the essential steps
on how to analyse data using StEvent. The procedure starting from scratch to run the provided StEvent
usage example is

st ar dev

nkdi r wor kdi r
cd workdir

r oot 4st ar

At the rootdstar prompt type:
.x doEvents.C(1,"-","<DST Fil e>")

where <DST Fi | e> must be replaced by an actual DST file. Ask one of your colleges where to find the
latest DST files in either XDF (extension .xdf) or ROOT (extension .root) format.

This will run the $STAR/ St Root / macr os/ anal ysi s/ doEvent s. Cmacro which runs a chain con-
sisting of two makers:

St Event Maker : Read events from DST input files (XDF files or ROOT files; the file is handled appro-
priately based on file type) and load StEvent.

St Anal ysi sMaker : Picks up the StEvent event and analyze it (incorporates a few simple examples).

It runs the chain on either a single file or all files under a specified root directory (see doEvents.C for
details). Example invocations are:

Processes 10 events from the specified XDF file.
.x doEvents. C(10,"-","/some_directory/some_dst_file.xdf");

Processes 42 events from the specified ROOT file.
. X doEvents.C(42,"-","/sonme_directory/sone_dst file.root");

Processes all events from all files found recursively under the specified directory.
. X doEvents. C(9999, "/some_directory/"," ");

The multiple-files feature works for XDF and ROOT files. To play with it yourself you can pick up StAnal-
ysisMaker and modify it piece by piece or use it as a template for a Maker of your own that works with
StEvent:

nkdi r St Root/ St MyAnal ysi sMaker

cp $STAR/ St Root / St Anal ysi sMaker/* St Root/ St MyAnal ysi sMaker/
[edit and nodify]

cons +St MyAnal ysi sMaker

cp $STAR/ St Root/ macr os/ anal ysi s/ doEvents. C ./

[edit to use your maker]

root 4st ar

At the ROOT prompt type

14

2 BASICS 2.8 Further Documentation

. X doEvents. C(<your argunents>);

By the time you gain more experience your “maker” will become more and more sophisticated but the
basic idea shown in the example stays the same.

2.8 Further Documentation

In STAR all documentation specific to a packages is under cvs control and stored in the same repository as
the source code of the package. You will find it usually in a directory called doc. In addition to that every
package should contain a README and ai ndex. ht m file with further information. (Note the “should”.)

StEvent makes use of various classes from the StarClassLibrary (SCL). Examples are St Thr eeVect or,
St Hel i x and St Parti cl eDefiniti on. You should have a version of the SCL manual at hand. It
also contains a description of the helix track model used in STAR and contains many examples.

Very important is also the documentation from the $STAR/ pans/ gl obal /i dI area. Here you will find
a detailed description of the DST tables content. Since StEvent pretty much reflects this content (although
in a different way and approach) this is the place to check if you don’t understand the meaning of certain
variables or methods. In this manual we cannot go too much into detail. 1t’s already thick enough.

And finally, you really should have the C++ bible from B. Stroustrup within 100 feet distance from your
desk. The more you get into C++ and OO the more you will appreciate this book. We already mentioned
that StEvent is a bit complex and especially when you look deeper into its internal structure you will find
weird things like virtual constructors, overloaded new/delete operators and much more. Then it is nice to
have Bjarnes book.

15

3 THE STEVENT MODEL

3 The StEvent Model

In the following we describe the basic concepts of StEvent. This is not to describe every class and every
method in detail but to explain the idea behind it and illustrate a few things in simple examples. If you need
more details have a look at the reference section and if you want to know everything about StEvent you
have to visit the source code directly.

3.1 Event Header

The event header carries the same name as the whole package: St Event . Confused? Don’t worry, when
we talk about the package we write StEvent, when we talk about the class we write St Event .

The class St Event plays a special role since it is the entry point and the upper most object of the whole
StEvent tree. From here you can reach every single bit and byte there is on the DST.

Obviously, this makes the St Event class somewhat “fat”. Figure reffig:umIEvent shows only a very small
fraction of the class design around St Event . The class St Event Sunmar y contains lots of information

StEvent | 1

#m ary 0.1

StEventSummary

Figure 3.1; Class diagrams for St Event and St Event Surmary.

gathered during the reconstruction of the event like: the total number of tracks, the number of positive
or negative tracks, the number of vertices of certain types, and several quasi-histograms which hold for
example transverse momenta distributions and other important quantities. Check the pointer to the event
summary before you use it. It could be NULL.

As already mentioned St Event opens the door to all the info there is on the DST. In order to get there
you have to navigate through the tree. Only few objects, mostly container and collections, can be reached
directly from the St Event objects. Here’s a list of some important objects which are directly stored in
St Event and let you climb further down the tree:

Collection of software monitors

TPC hit collection

FTPC hit collection

SVT hit collection

List of all track nodes

List of the detector info for each track
Primary vertices (mostly only one)

List of all VO vertex candidates

© © N o g & w bdh o

List of all Xi vertex candidates

16

3 THE STEVENT MODEL 3.2 Software Monitors

10. List of all kink vertex candidates

11. Level-0 trigger

And remember, an object you get by pointer is not guaranteed to exist, an object you get by reference
always exist.

What else does St Event contain? Well, all the usual stuff one would expect to see in an event header:
event identifier, time when the event was recorded, the trigger mask, the bunch crossing number and more.
For a complete reference see section 5.18.

3.2 Software Monitors

The STAR DST contains a bunch of tables called software monitors. Before we go into details let’s clarify
what this is. During the reconstruction of the various detectors lots of statistics and summary information
is generated which is not necessarily of importance for the physics of the event but tells you a lot on how
the reconstruction programs performed. These are mostly quantities which cannot be derived from other
objects in StEvent and would be lost otherwise. In a sense they monitor the reconstruction details. That’s
where the name ’software monitor’ comes from.

There are many of these monitors and even the “global” reconstruction has one. This is not really a detector
but a large fraction of our software deals with combining all the detectors in order to create global tracks
and find the primary vertices.

Since there are many they have to be organised in a transparent way. This is depicted in Fig. 3.2 where
all monitor classes and their relations are shown. You get the actual instance of St Sof t war eMoni t or
from St Event and then you can select which component, i.e. which monitor object you want by invoking
the proper method. These methods are named after the component they return: t pc() returns a pointer
to the St Tpc Sof t war eMbni t or,svt () tothe St Svt Sof t war eMbni t or —well, you get the idea.
As usual you should check for NULL pointers. If a detector was not reconstructed in the reconstruction
chain it’s likely that you will not find the corresponding monitor.

The specific software monitor classes are pretty simple flat classes. They have no relation with any other
class. All they do is to hold data. Because of this, they have no member access functions and all data mem-
bers are public. In order to make things easier for people moving from table-based analysis to StEvent-
based analysis we kept even the table names. With other words the software monitor classes match their
table counterparts 1:1. The names are not always descriptive but the author got tired of inventing new
names. You’ll find more details on what is what in the reference section of this manual.

Here a simple example on how to use the software monitors:

void printTpcCl usterlnfo(ostream& os = cout, StEvent* event)
{
St TpcSof war eMbni t or *t pcMbn = O;
if (event && event->softwareMonitor())
t pcMon = event->softwarehonitor()->tpc();

if (!'tpchMon) return; /1 no nonitor

0s << "Total # of TPC cluster:" << tpcMn->n_clus_ tpc_tot;
for (int i=0; i<24; i++) {

17

3.3 Trigger and Trigger Detectors 3 THE STEVENT MODEL

StTpcSoftwareMonitor

0.1

#mTpcMonitor

StFtpcSoftwareMonitor

0.1
#mFtpcMonitor

0.1

StSvtSoftwareMonitor
#mSvtMonitor—]

StSoftwareMonitor

StEmcSoftwareMonitor

0.1

#mGlobalMonitor

0.1 . 0.1

StGlobalSoftwareMonitor StL3SoftwareMonitor StCtbSoftwareMonitor

Figure 3.2: Class diagrams for the software monitors.

0s << "lnner sector " << i << " has "

<< tpcMon->n_clus_tpc_in[i] << " cluster" << endl;
0S << "Quter sector " << i << " has "

<< tpcMon->n_clus_tpc out[i] << " cluster" << endl;

Note that, as everywhere in StEvent indices run from O to si ze- 1. If you are new to C/C++ and wonder
why this is so, you really should read section 2.3.1.

18

3 THE STEVENT MODEL 3.3 Trigger and Trigger Detectors

StTriggerDetectorCollection

1
1
1
#mCtb #mMwc #mzdc
1
1 1
StCtbTriggerDetector StMwcTriggerDetector StZdcTriggerDetector

StTrigger
StLOTrigger

Figure 3.3: Class diagrams for the trigger detector collection and the St Tr i gger hierarchy.

3.3 Trigger and Trigger Detectors

The trigger is put together from data recorded by a bunch of trigger detectors combined in some logic. So
far STAR deals with 4 trigger levels numbered 0 — 3. Currently only level-0 (L0) is implemented. Others
will follow. All trigger classes inherit from a common base class St Tri gger . As mentioned above, at
the moment there is only one derived class St LOTr i gger as depicted in Fig. 3.3. The class contains
everything there is available about the actual trigger: trigger word, trigger action word, multiplicities, and
more. The trigger is directly contained in the St Event class. In order to get a pointer to the LO trigger
use: St Event:: |1 OTri gger (). Even if we repeat us here: it is a pointer and therefore can be NULL.
At the moment all simulations have no trigger data. You were warned.

The trigger detectors are those detectors which data is used in the trigger (which doesn’t mean that the
data isn’t useful for other things as well). There’s a couple of them: the Central Trigger Barrel (CTB),
the Zero Degree Calorimeter (ADC), the Vertex Position Detector (VPD), and the Multiwire Propor-
tional Chamber (MWC). This means we need a collection to hold them together and indeed this is what
St Tri gger Det ect or Col | ect i onisall about. The trigger detector design is shown in Fig. 3.3. The
collection holds all classes which describe the different trigger detectors: St MacTr i gger Det ect or,
St Ct bTri gger Det ect or, St ZdcTr i gger Det ect or ,and St VpdTr i gger Det ect or (notshown).
These trigger detectors store the actual ADC and TDC values including some calculated quantities. Check

in the reference section for more details. The collection is a member of St Event . To get a pointer to
the collection use: St Event: : tri gger Det ect or Col | ecti on() . From there you get the specific
trigger detectors through a set of methods. The methods are named after the component they return by refer-
ence: ct b() returnsareferencetothe St Ct bTri gger Det ect or ,manc() tothe St MmcTr i gger Det ect or,
and so on. Since they are returned by reference you can be sure the objects exist. No checks necessary.
Note that “exist” is not a synonym for “makes sense”. The reason for this is that the DST contains the
data for all trigger detectors in one big table. If it available the collection (StTriggerDetectorCollection) is
created else St Event : : tri gger Det ect or Col | ecti on() will return NULL. Once created the data

19

3.4 Tracks 3 THE STEVENT MODEL

in the table is used to setup the instances of the various trigger detectors. If a specific detector wasn’t used
its data is set O (so the author hopes) but the data is still there.

Here’s an example which dumps the CTB data in form of a table:

voi d dumpCt b(St Event* event)

{
if (!(event && event->triggerDetectorCollection())) return;
St Gt bTriggerDetector &tb = event->triggerDetectorCollection()->cth();
cout << " tray | slot | m ps | time \n";
COUL << Moo mmm oo \n";
for (int i=0; i<ctb.numberOTrays(); i++)
for (int j=0; j<ctb.nunberO'Slats(); j++)
cout << setw(b) << j << " | "
<< setw(4) << j << " | "
<< setw(10) << ctb.mps(i, j, 0) << " "
<< ctb.time(i, j, 0) << endl;
cout << "\nLO trigger:\n";
if (event->I0Trigger()) {
PR(event ->| OTri gger ()->mwxcCtbMul tiplicity());
PR(event - >l OTri gger () - >macCt bDi pol e());
PR(event - >l OTri gger () - >macCt bTopol ogy()) ;
PR(event - >l OTri gger () - >macCt bMonent ()) ;
}
el se
cout << "not avail able" << endl;
}

Again, we are using the PR() macro from St A obal s. hh to save some typing. The names of the
methods speak for themself.

3.4 Tracks

This is probably the most complex part of the design. Before we get into too much detail we give a brief
introduction on what a track is and explain the differences between global and primary tracks. We then
introduce the track node which plays a very central role in the StEvent track model. The different pieces
of information which make a track such as the track geometry and the various traits are explained later
together with a short introduction to filters, which, as you will learn, allow to apply predefined algorithm
to select and filter information out of the data.

3.4.1 Introduction to Tracks

The STAR tracker, known as t pt , performs the tracking in the main STAR tracking detector the TPC. It
finds a set of hits, which t pt assume to belong to one track and applies fits in order to determine the track
parameters. Once this is done the track is passed along the chain. Points from other detectors might be
added. At the end this track is then fitted with a more sophisticated fitting method and from there on is

20

3 THE STEVENT MODEL 3.4 Tracks

called a global track (class St G obal Tr ack). The name "global” stems from the fact that this is a fit
which is possibly composed of his from several tracking detectors.

But wait, this is not the end of the story. STAR can do better than this. By using all global tracks we can
reconstruct the primary vertex (or vertices) with pretty good accuracy. A track which originates from the
primary vertex (and most do) can be refitted using the primary vertex as additional point. This increase dra-
matically the accuracy in which STAR can measure particles, both in terms of direction and momentum. If
a global track points back close enough to the primary vertex and the refitting works out well (whatever that
means) then this track, or better the refitted track, becomes a primary track (class St Pri mar y Tr ack).
A primary track only makes sense if it refers to a primary vertex. If a primary track is found the global
track which was used to create it makes almost no sense any more and could be dropped, i f you trust
the procedure. However, things aren’t as perfect and the primary track might have been misidentified. For
that reason STAR keeps currently all global tracks. That means that for every primary track there is one
corresponding global track but every global track does not necessarily have a corresponding primary track.
The fit might have failed badly. In future this might change and we might be able to drop a fraction of the
global tracks if the primary track is superior.

If a primary track fit succeeds the new track parameters and its errors are stored. To really confuse you,
we should mention that even the number of hits might change, since the newly refitted track might exclude
some hits and/or add new hits. StEvent is able to cope with all these scenarios and that is one of the reasons
why version 2 is somewhat more complex than good old version 1.

So far so good. But what’s with the tracks which fail the fit. Obviously these aren’t primary tracks and —
you guessed it — come from a secondary vertex. Here, things become a bit difficult. While a primary vertex
can be found easily secondary vertices are more tricky to detect (at least in a Heavy-lon collision) and can
hardly be identified unambiguously. If one could do so, one could repeat the same trick as with the primary
tracks and refit the global track using the secondary vertex such making it a secondary track. But we can’t
— at least for now. As as consequence STAR doesn’t use the concept of secondary tracks yet.

All global and primary tracks are fitted according to a certain tracking model. Some models include the
effect of energy loss and multiple scattering in the fit and the fit parameters therefore depends on the
mass of the particle which created the track. This is not know a priori or at least cannot be determined
unambiguously. In this case the same track might be fitted with different mass hypothesis. This not only
alters the fit parameters and errors but possibly also the hits assigned to the track. In a sense these are tracks
created from the same seed. How we keep track of all these different flavours is explained in the next
section.

To summarize: STAR has two kinds of tracks global tracks which can come from wherever they want and
primary tracks which always point back to the primary vertex. The position of the primary vertex was used
to refit the primary tracks.

3.4.2 The Concept of the Track Node

As we have seen in the previous section there are two kinds of tracks (global and primary) of which each
might get possibly fitted with different models or algorithms such creating a whole bunch of tracks. But
we have to keep in mind that all come originally from the same seed formed early in the reconstruction
chain. Only one of them can be the true track, or better only one comes closest to the truth. If we count
tracks we can only count all of them as one. Many students spent by far too much time hunting the problem
of double-counting.

We have to have a way to tell that all these “flavours” belong together, even if they have different fit
parameters or even a slightly different set of hits. This is were the track node comes into the game (class
St Tr ackNode).

A track node holds all tracks which originate from the same seed. Every track knows about the node it
belongs to and thus allows to navigate from one track in the node to the other. Each node contains 1-n

21

3.4 Tracks 3 THE STEVENT MODEL

StEvent: detector info vector

6] B | =
oy i VI VI Y
: : _- StEvent: vecter of track nodes
L -/ - @ Global Tracks

AlA|AIA|A | A A Primary Tracks

B Detector Info

StPrimaryVertex: vector of daughter tracks

Figure 3.4: Schematic view of the track node collection and its relation to the detector info collection and
the list of daughter tracks of the primary vertex.

tracks. This is depicted in Fig. 3.4. The array shown in the middle of the picture shows the collection of
nodes as held by the StEvent class itself. Every element (depicted as a box) represents one node which
contains a primary (solid triangle) and/or a global track (solid circle). The length of the track node list lies

between: maX(NpTimaryi Nglobal) and Nprimary + Nglobal-

3.4.3 Detector Information

From the previous section you probably got the impression that a given primary track and its referring
global track share lots of information. Actually, there is much less to share then one might think. Almost
everything changes or can change when a track is refitted. One of the few things which often do not change
are the hits used in the tracks. If the global track fit points back to the vertex the additional constraint,
i.e. the position of the primary vertex, changes the parameters in fact only slightly.

If the set of hits, or the detector information, is the same then it belongs in a separate class so one can use
it for all tracks in the same node. This is why there is a class St Tr ackDet ect or | nf o.

All detector specific information (essentially the list of hits) is contained in this class. A track can well live
without them since all the reconstruction is already done. And indeed on the long term STAR cannot afford
to write all hits to DST. In this case each track might or might not have a pointer to an existing instance of
St Tr ackDet ect or | nf 0. Since several tracks can share this instance it is obvious that no track can own
them. This is why all objects of type St Tr ackDet ect or | nf o are stored in a separate, flat and simple
list which is directly accessible from St Event . Each track only points to its detector info. This is depicted
in Fig. 3.4. The upper array represents a possible list of detector info objects. As you can see tracks in
a node mostly share the same detector info but this doesn’t need to be the case. If a primary vertex fitter
decides to reject one or more hits and/or adds new hits than the detector infos might be different although
the tracks are in the same node (see right most node in the figure as an example). It makes obviously no
sense to keep both tracks in the same node if the hits are very different but if only one or two hits are

22

3 THE STEVENT MODEL 3.4 Tracks

different they still are related - somewhat.

Note, that the size of the detector-info list is larger or equal the number of nodes.

3.4.4 The Track Classes

So far we only discussed the basic concepts. It is time now to have a closer look at the design of specific
classes. It is really helpful to look at the class diagrams in Fig. 3.5. It looks complicated but once you get
the idea things become easy.

The base class St Tr ack is an abstract class, i.e. you won’t be able to create an instance of it. The two con-
crete classes are St G obal Track and St Pri mar yTr ack. Both have the same interface as St Tr ack.
Whatever you can do with an instance of St G obal Tr ack you can do with St Pri mar yTr ack as well.
The difference is in the implementation but not in the interface. For this very reason whenever a track is
returned by a method or is used as an argument, a pointer or a references to St Tr ack* is used. This is
were polymorphism comes in handy.

With other words it is sufficient to explain St Tr ack and the other two come for free. As you can see in
Fig. 3.5 St Tr ack is composed of several classes. It either contains them by value or by pointer. There
are:

StTrackGeometry This is an abstract class which only serves as an interface the the actual, concrete
implementation. You get a pointer to the instance via the St Tr ack: : geonet r y() method. The
track geometry contains exactly what the name implies. It describes the parameters of the track
which let us describe the path of the particle in the detector. Which set of parameters are actually
obtained from a fit depends strongly on the track model. However, we don’t want any new track
model to make you change your code and this exactly is the reason d’ etre for St Tr ackGeonetry.
It defines the interface and with it the parameters it has to provide. If the track model does not
directly use or produce them they have to be derived. This insures that every tracking model which
gets plugged in doesn’t break anything. The class guarantees that you always get:

e curvature (incm—1)

e charge (in units of +e)

e dip angle (in radians)

e psi (in radians) , i.e. ¥ not ¢, — watch out?

e origin (asa St Thr eeVect or F)

e momentum at the origin (as a St Thr eeVect or F)

e ahelix (asa St Physi cal Hel i xD)
The helix now is somewhat special since it obviously implies that the track can be described as
such. Although this is not always true (FTPC, low momentum tracks in TPC) it is a very good
approximation for almost all TPC tracks — and a helix can be handled analytically. This makes it

very useful to find the distance-of-closest approach to a given point, to extrapolate the path of the
track and to easily get the 3-momentum at every point along the trajectory.

At the moment there is actually only one concrete class implemented and that is — you guessed it —
the helix model (St Hel i xMbdel). This is where all the calculations (if any) are done to make sure
you get what you ask for.

If you want to know which model is actually used you may call the St Tr ackGeonet ry: : nodel ()
method which returns an element of the enumeration type St Tr ackModel . See in section 2.2 what
types are available or check directly in St Enuner at i ons. h.

2if you don’t know the difference have a look in the appendix of the StarClassL ibrary manual. There the parameters are explained
in detail.

23

3.4 Tracks 3 THE STEVENT MODEL

<<Interface>>
StPidAlgorithm StTrackDetectorInfo
(from common)

A 0..1
.1 1 Lr #mDetectorinfo
StDedxPidTraits StTpcDedxPidAlgorithm
-mTraits
1
-mTrack 0.1 StTrackNode
ode
1
StTrackPidTraits F 0.1 1
777”””’””"*”**”fwg StTrack P StTrackFitTraits
#mFitTraits
1 1
#mG etry #mTop yMap
1
<<Interface>> 0,.1 StTrackTopologyMap
StTrackGeometry
StGlobalTrack StPrimaryTrack
StHelixModel

Figure 3.5: Class diagrams for St G obal Tr ack and St Pri mar yTr ack including related classes and
dependencies.

24

3 THE STEVENT MODEL 3.4 Tracks

StTrackFitTraits Every track gets fitted and every fit algorithm provides errors, a covariant matrix and a
x?2 value — if the algorithm is worth a penny. This and a bit more is stored inthe St Tr ackFi t Trai t's
which you get through St Track: : fit Trai t s() by reference! By reference since St Tr ack
contains the instance by value. It is always present. No need to check for NULL pointer and such
crap. There’s no need for an abstract layer hence we don’t need a pointer.

There might be different ways to fit and different ways to calculate the errors but they better be avail-
able, always. After all, this is what determines the quality of the track and thus decides if tracks get
included in the analysis or get rejected.

StTrackNode See section 3.4.2. St Tr ack: : node() will return a pointer to the node the track belongs
to.

StDetectorInfo See section 3.4.3. St Tr ack: : det ect or | nf o() will return a pointer to its respective
detector info. Note, that there is no way to navigate back from the detector info to the tracks which
are using it.

StPidTraits Each track has a list (container) of so called PID traits. Each of them contains information on
the ID of the particle. What they actual provide is not specified. All we know is that we get an object
which tells us something about the identity of the track. St Pi dTr ai t s is an abstract class. The
concrete classes are St DedxPi dTraits, St Ri chPi dTraits, and St Tof Pi dTrai ts. The
latter two are not implemented yet. This part is a bit complicated and that’s why it got its own section
(see 3.4.6 below).

StTrackTopologyMap The STAR detectors produces all together almost a million hits. In order to keep
the DST size at a moderate level all cannot get stored, probably none on the long term. There are
however many reasons to keep a minimum level of information about the hits used to fit the tracks.
This minimum level is contained in St Tr ackTopol ogyMap. For more check out the reference
manual.

3.45 TPT Tracks

You probably never will need them but they are mentioned here for completeness. The main reason they
are in StEvent is for debugging purposes and studies by reconstruction experts. For physics always use
global or primary tracks.

The current STAR tracker for the TPC is called TPT. It not only finds the tracks but also performs some
simple fits. In a sense "TPT tracks’ are real tracks, but, and this is important, TPC only tracks. In addition
the track parameters are determined in a very simplistic fitting method.

TPT tracks are described by St Tpt Tr ack which is identical in look and feel to St G obal Tr ack.
Tracks of this type are owned by the referring track node. And this is almost everything there is to say
about them.

3.4.6 PID Traits

PID traits contain information about the identity of the track. Every detector will supply some sort of
information useful for PID and there will be several methods for each detector to derive the same kind of
information. The most basic ways to find out about the PID of a track are:

dE/dx in TPC, FTPC and SVT.
Ring area densities in the RICH detector.

TOF information from the TOF patch.

25

3.4 Tracks 3 THE STEVENT MODEL

Topology info where the ID of a track can be derived, or at least be constraint, from its measured decay
products (e.g. kinks).

It seems natural that, as the experiment progresses, STARs PID methods will be refined and new algorithms
will get developed. If every PID method for every detector would require an concrete interface (via con-
crete classes) the class St Tr ack would be subject to permanent modifications. Schema evolution would
become daily business. Very bad. The only way out of this dilemma is to shield St Tr ack from this kind
of PID inflation by adding an abstract layer. And this is all what St Tr ackPi dTr ai t s is for.

St Tr ack now holds only a list of pointers to St Tr ackPi dTr ai t s and doesn’t need to know about
any specific details. Since the various ways of doing PID differ quite significantly there is hardly any data
member or method they have in common. That’s why the abstract class St Tr ackPi dTr ai t s has only
one member which returns the ID of the detector the PID info originates from. The PID traits collec-
tion in St Tr ack obviously contains concrete objects which will provide the data you are looking for but
St Tr ack is screened from any further details.

There is currently only one concrete class implemented which is meant to contain the dE/dx derived from
various methods in the TPC, FTPC and SVT: St DedxPi dTr ai t s. If a specific PID method or detector
needs more than this class provides a new one has to be created. For sure, a new class is needed for the
RICH, for the TOF and for topology-PID. But that’s something for the future.

The class St DedxPi dTr ai t s gives you the mean dE/dx, the error on the mean, the number of points
used, and the method which was applied to calculate it. This method is returned as an enumeration
(St DedxMet hod) and can take the following values: kTr uncat edMeanl d,kEnsenbl eTr uncat edMeanl d,
kLi kel i hoodFi t | d, kWi ght edTruncat edMeanl d, and kOt her Met hodl d. The latter is a
place-holder which can be used for tests and code development (see also sec. 2.2).

So now | have a list of St Tr ackPi dTr ai t s with which | hardly can do anything — how do | get the
object | need? Good questions with an easy answer. You have to scan the list and pick out the object you
are looking for and cast it up to the concrete class for only the concrete class will reveal its content. This is
where you obviously need RTTI (Real Time Type Information) as provided by ANSI/C++. Alternatively
you can use ROOT-RTTI which we will not discuss here. And here an example to show how it works:

11

/1 Gven a pointer "track’ to a valid track object
/1 we first get the list.

11

St SPtrVecTrackPidTraits& traits = track->pidTraits()

I

/1 What we want here is the dE/dx fromthe TPC from
/1 a sinmple truncated mean. This means:

/1 1. detector kTpcld

/1 2. class St DedxPi dTraits

/1 3. method kTruncat edMeanl d
11
St DedxPi dTrai t s* pi d; /1 this is what we want

for (int i=0; i<traits.size(); i++) {
if (traits[i]->detector() == kTpcld) {
/1l Here we know it is sonme PID object derived from TPC dat a

/1 Now the dynani c cast
pid = dynam c_cast <St DedxPi dTraits*>(traits[i]);

[1 If traits[i] is NOT of type StDedxPidTraits the dynami c cast

26

3 THE STEVENT MODEL 3.4 Tracks

/1 returns a NULL pointer. No other cast can do this !!!
/1 If we succeed we found the right object.
if (pid && pid->nethod() == kTruncat edMeanl d) break;

}
}
if (pid) {
/1 W& found what we wanted
cout << pid->nean() << endl;
}

Figure 3.6: Abstraction focuses upon the essential characteristic of some object, relative to the perspective
of the viewer.

Instead of a dynami c_cast onealso could use t ypei d() asin

if (typeid(*pid) == typei d(StDedxPidTraits))
pid = static_cast <St DedxPi dTraits*>(traits[i]);
which is probably even faster.

In the example we used St Tr ack: : pi dTr ai t s() to get the whole list. In fact we can do better. Since

we already know we want PID from the TPC we can use the overloaded version St Tr ack: : pi dTrai t s(St Det ect or | d)
to get all PID traits for one specific detector. What happens internally is that the method scans the whole

list, creates a new container and puts in all the objects (or better the pointer to the objects) with PID data

from a the requested detector. This is what the method returns.

Now we save a line and the example above looks like:

St PtrVecTrackPidTraits traits = track->pidTraits(kTpcld);
St DedxPi dTrai t s* pid;

for (int i=0; i<traits.size(); i++) {

27

3.4 Tracks 3 THE STEVENT MODEL

pid = dynami c_cast <St DedxPi dTraits*>(traits[i]);
if (pid & pid->nethod() == kTruncat edMeanl d) break;

}
if (pid) {
/1 W found what we wanted
cout << pid->nean() << endl;
}

But that’s not the end of it. We can do even better, but this is described in the next section (3.4.7) since it
needs a bit more explanation. With what was shown here you already get very far. Remember that every
cast but a dynami c_cast will cause you nothing but trouble. Have a look at your favourite introduc-
tory C++ textbook on dynarmi c_cast and RTTI. (If your favourite introductory C++ textbook doesn’t
discuss dynani c_cast , carefully tear out all pages and recycle them. Dispose of the book’s cover in an
environmentally sound manner, then borrow or buy a better textbook.)

3.4.7 PID Algorithm, Filters and Functors

In OO one often talks about functors which are essentially nothing but functions wrapped in a class. The
reason why one wants to do this are manifold. One is that one can build up a hierarchy of functions by
inheritance and, this is even more important, lifetime control. A function is gone when it finishes while an
object still lives happily in memory. Thus a functor can do some work and then rest until someone comes
and picks up the information it has stored. Also it is much easier to pass objects than pointer to functions.
(Ever tried to pass an array of function pointers in C ?).

If a functor is used to scan a list and returns only a subset of the elements it is called a filter. In the context
of PID traits we use a PID algorithm which serves as a filter but is supposed to do a bit more than this.

The essential method all tracks provide is:

const StParticleDefinition*
St Track: : pi dTrai t s(St Pi dAl gorithm& al go) const;

As usual St Pi dAl gor i t hmis an abstract class (functor) which does nothing but defining the interface to
the “real” function, i.e. it defines the arguments it takes and what it has to return. pi dTr ai t s() then calls
this function, passing to it the proper arguments. The important thing is that we require pi dTrai t s() to
return “something’, namely the definition of the most probable particle (for St Parti cl eDefi ni ti on
see the StarClassLibrary). How it does that is up to the guy who implements the concrete functor, that is
you.

The decleration of St Pi dAl gor i t hmfrom St Funct i onal . h looks as follows:

struct StPidA gorithm
{
virtual StParticleDefinition*
operator() (const StTrack& const StSPtrVecTrackPi dTraits& = 0;

}

The function which does the work is invoked when the operator() is invoked. All the data needed to do the
job are passed as arguments. This is the track itself and the list of all PID traits. The PID algorithm now
can pick up the detector (or detectors) and methods of its choice and derive the final answer. With other
words the algorithm is doing the PID. Over time you will collect a set of PID algorithms which you can
plug in whenever needed. They may use different detectors and methods or possibly combine them.

28

3 THE STEVENT MODEL 3.4 Tracks

To make it completely clear, here’s an example of a PID algorithm which uses the dE/dx of the TPC and
the SVT and returns the most probable particle:

/'l MyPID. h
#i ncl ude " St Event Types. h"
struct MyPID : public StPidAl gorithm

{

St Particl eDefinition*

operator() (const StTrack& const StSPtrVecTrackPidTraits&);
b
/1 MyPI D. cxx

#i ncl ude "MPI D. h"
St Particl eDefinition*
MyPI D: : operator () (const StTrack& track,
const StSPtrVecTrackPidTraits& traits)
{

St DedxPi dTraits* tpcPid
St DedxPi dTrai ts* svtPid

0;
0;

for (int i=0; i<traits.size(); i++) {
St DedxPi dTraits *pid = dynanmi c_cast <St DedxPi dTraits*>(traits[i]);
if (pid & pid->nethod() == kTruncat edMeanl d) {
i f (pid->detector == kTpcld)
tpcPid = pid;
else if (pid->detector == kSvtld)
svtPid = pid;

}

if (svtPid & tpcPid) {
/1 do something with the nunbers and figure

/1 out what particle is nost likely
11

/1 Assune it’'s a pion
if (track.geonetry()->charge() > 0)
return StPionPlus.instance();
el se
return StPionM nus.instance();

}

el se
return O;

}

The piece of code where you make use of the class might look as this:

#i ncl ude "MyPI D. h"
11

MyPI D nypi d;
const StParticleDefinition *part = track->pidTraits(mypid);

29

3.4 Tracks 3 THE STEVENT MODEL

cout << "The nane of the particle is << part->nanme() << endl;
cout << "its mass is m=" << part->mass() << " GeV/c2" << endl;

So far so good, but what if | don’t want to return something, what if I simply want to have a look without
making a decision? Easy, return a NULL pointer — who cares. As long as you know what the algorithm is
doing this should work fine.

Here’s a simple version of this approach. Let’s say we are interested in TPC dE/dx (truncated mean) and
nothing else:

/1 MyTpcAl go. h
#i ncl ude " St Event Types. h"
class MyTpcAl go : public StPidAl gorithm

{
publi c:
MyTpcAl go() {nmTraits = 0;}
StParticl eDefinition*
operator() (const StTrack& const StSPtrVecTrackPi dTraits&);
St DedxPi dTraits* traits() { return nifraits; }
private:
St DedxPi dTraits *niraits;
b

/1 MyTpcAl go. cxx
#i ncl ude "MyTpcAl go. h"
StParticl eDefinition*
MyTpcAl go: : operator() (const StTrack& t, const StSPtrVecTrackPidTraits& traits)
{
mMraits = 0;
for (int i=0; i<traits.size(); i++) {
if (traits[i]->detector() !'= kTpcld) conti nue;
St DedxPi dTraits *pid = dynam c_cast <St DedxPi dTraits*>(traits[i]);
if (pid & pid->nmethod() == kTruncat edMeanl d) {
nmiraits = pid;
br eak;
}
}
return O;

}

This now works really as a filter. We added three things which St Pi dAl gor i t hmdoes not require: A
private data member mTr ai t s which is meant to hold the "right” type of PID traits we want to filter out, a
method to returnitt r ai t s() , and a constructor to initialize the private data member to NULL. Note, that
the base class St Pi dAl gor i t hmonly wants us to define the oper at or () , the rest is up to us. We are
free to add whatever we want.

This is how it can be used:

#i ncl ude "MyTpcAl go. h"
/1

30

3 THE STEVENT MODEL 3.5 Vertices

My TpcAl go t pcDedx;
track->pi dTraits(t pcDedx);

cout << tpcDedx.traits()->nmean() << endl;
cout << tpcDedx.traits()->errorOnMean() << endl;

This code uses very few lines. The code in My TpcAl go is highly re-usable and whoever uses the PID
algorithm saves a lot of typing.

In StEvent there is actually one concrete PID algorithm implemented: St TpcDedxPi dAl gorithm
The algorithm used stems from Craig Ogilvie. It filters out the TPC dE/dx object (StDedxPidTraits) and
returns the most probable particle, but also keeps all the information selected. The additional methods now
make use of the stored information and let you work with the object after the select/filter operation is done.
It is much more complicated then the examples shown here but the basic idea is the same. See 5.86 for
details.

3.5 Vertices

A vertex is, after all, a measured point in space and that’s why the basic vertex class St Ver t ex inherits
from an abstract base class called St Measur edPoi nt . The same is actually true for all hits. A measured
point has a position, position errors, and even a covariant error matrix but it doesn’t implement them. All
it does is to guarantee that everything which inherits from it provides these methods. The advantage is that
all measured points (i.e. hits and vertices) have the same basic methods which is a great advantage when it
comes to fitting or drawing.

The base class for all vertices is St Ver t ex. Inaddition to the methods inherited from St Measur edPoi nt
each vertex provides at ype() method which returns an enumeration type StVertexld (see section 2.2), a
x? value from the fit, a pointer to the parent track and a list of daughter tracks. However, St Ver t ex is
still abstract. The five concrete vertex classes are:

St Pri mar yVert ex to hold the events vertex (or vertices)

St Cal i brati onVert ex to hold the various vertices used for calibration and test purposes.
St VOVer t ex which is primarily used for Ko and A decay vertices

St Xi Vert ex for = decay vertices

St Ki nkVer t ex for kink vertices

The UML diagram for the vertices classes is shown in Fig. 3.7.

The primary vertex St Pri mar yVert ex class plays an important role since it holds all primary tracks.

This is depicted in Fig. 3.4. If the class gets deleted all primary tracks get deleted.

The primary vertex, or vertices, are directly stored in the St Event class. Usually, in Au-Au collisions

there’s only one “primary” vertex but there are cases (pile-up events) where there can be more than one.

That’s why St Event has the nunber O Pri mar yVer ti ces() method and the access member func-

tion has an optional argument pr i mar yVer t ex(unsi gned i nt i=0).Henceevent->pri maryVertex()
implies event - >pri mar yVer t ex(0) . If there is more than one you have to give the index.

The primary vertices are ordered according to the number of daughters (i.e. primary tracks) they hold. The

first in the list is always the the vertex with the most daughter tracks.

All secondary vertices St VOVert ex, St Xi Vert ex, and St Ki nkVer t ex, store only references to
their daughter tracks but they do not own them. In the reconstruction phase the daughter tracks are actually

31

3.6 Hits 3 THE STEVENT MODEL

StVertex

£

StKinkVertex StPrimaryVertex StVOVertex

0.1

#mVOVertex

1
StXiVertex

Figure 3.7: Vertex class diagrams and their dependencies. St Cal i br at i onVer t ex is not shown.

refitted with the vertex constraint but do not become StTrack objects. Only the momentum is extracted and
stored as data member in the referring vertex class. This might change later but this is how it is done now.
The referenced daughter tracks are always global tracks (St G obal Tr ack) .

By the way, although all vertex classes hold a parent pointer it is (currently) always zero. This might change
in future.

All secondary vertices are stored in flat containers and accessible from St Event . The methods to obtain a
reference (1) to the collections are St Event : : vOVerti ces(),St Event: : ki nkVerti ces(),and
St Event: : xi Vertices().

3.6 Hits

The base class for all concrete hit classes is St Hi t which itself inherits from St Measur edPoi nt . So
all the *position’ related stuff comes with the measured point; position, position errors, and a covariant
error matrix. St Hi t adds what all hits have in common such as a charge, a detector ID, a track reference
count, i.e. the number of tracks which use the hit, and a method to return the list of tracks which reference
the hit. The list of tracks is created on the fly since a hit doesn’t know anything about tracks. Only tracks
hold references to their hits.

Here an example on how to obtain a list of all global and primary tracks which use a given hit:

void f(StH t& hit, StEvent& event)

{
St PtrVecTrack gvec, pvec;
gvec = hit.rel atedTracks(event->trackNodes(), gl obal);
pvec = hit.rel atedTracks(event->trackNodes(), primary);

if (gvec.size() + pvec.size() != hit.trackReferenceCount())
cerr << "This cannot happen unless something is very wong.

<< endl;

32

3 THE STEVENT MODEL 3.6 Hits

cout << "The hit is used to fit
<< gvec.size() << " global tracks and "
<< pvec.size() << "primary tracks."

cout << "The monenta of the tracks are:" << endl;
int i;
for (i=0; i<gvec.size(); i++)

cout << gvec[i]->geometry()->nmonentum() << endl;
for (i=0; i<pvec.size(); i++)

cout << pvec[i]->geonmetry()->nmonentum() << endl;

Needless to say that St Hi t is an abstract class. The concrete classes are: St TpcHi t, St Svt Hi t, and
St Ft pcHi t . The class diagram in Fig. 3.9 shows their relation. In the following we describe the different
classes in detail.

3.6.1 TPC hits

Each hit returns its position in global coordinates. In addition hit classes also provide information on
their local coordinates through methods which decode a detector specific data word. For the TPC hits
there are methods to return the sector number (1-24) and row number (1-45). Please read section 2.3.1
about the difficulties with numbering schemes starting at 1. There are two additional member functions
padsl nHi t () and pi xel sl nHi t () which return information on the number of pads and pixels used
to compose the hit. See 5.87 for details.

The hits are stored in a tree-like structure organized according to their “natural” location, i.e. sector- and

row-wise. The collection you obtain (by pointer) via St Event : : t pcHi t Col | ecti on() holds a list of

sectors (St TpcSect or Hi t Col | ect i on)which itself holds a list of padrows (St TpcPadr owHi t Col | ecti on).
Each padrow finally contains the list of hits in this padrow. This is illustrated in the class diagrams in

Fig. 3.10. You get the idea when you look at the following example:

3; /] 4th sector
24; /1l 25th row

const int isec
const int irow

cout << "sector << isec << cont ai ns
<< event->tpcHi tColl ection()->sector(isec)->nunmberf Hits()
<< " hits" << endl;

StSPtrVecTpcH t& theHits =
event->tpcHi t Col | ecti on()->sector(isec)->padrow(irow)->hits();

cout << "sector << isec << padrow " << irow << cont ai ns

<< theHits.size() << " hits" << endl;

for (int i=0; i<theH ts.size(); i++) {
cout << theHits[i]->position() << endl;
cout << theHits[i]->charge() << endl;
cout << theHits[i]->padsIinH t() << endl << endl;
cout << theHits[i]->pixelsinH t() << endl << endl;
assert(theHi ts[i]->padrow) == irow);
assert(theHits[i]->sector() == isec);

33

3.6 Hits 3 THE STEVENT MODEL

}

The top collection (St TpcHi t Col | ect i on) and each sector (St TpcSect or Hi t Col | ect i on) pro-
vide a method nunmber O Hi t s() which returns just that, the number of all TPC hits and the number of
hits in the corresponding sector.

This organization scheme makes it much easier to perform gain and residual studies and can be better
integrated into the reconstruction phase than a long flat list of hits. The disadvantage is that looping over
all hits does require somewhat more code but selecting hits in certain rows or sectors is easy and very
efficient.

3.6.2 FTPC hits

The FTPC hit class St Ft pcHi t is very similar to the TPC version. However, because of the different
detector geometry the hits are stored according to planes (20) and then sectors (6). This is depicted in
Fig. 3.11. Other than the TPC hit the FTPC hit has a method to return the size of the hit in time direction
(ti mebi nsl nHit()) butno method to return the number of pixels per hit. See 5.24 for details. You
probably should also read the warnings in section 2.3.1 on the numbering schemes.

The following is the equivalent example to the one above but for the FTPC:

11;
3;

const int iplane
const int isec

cout << "plane << iplane << cont ai ns
<< event->ftpcHitColl ection()->plane(iplane)->nunber O Hits()
<< " hits" << endl;

StSPtrVecFtpcH t& theHits =
event ->ftpcHit Col | ection()->pl ane(i pl ane) - >sect or (i sec)->hits();

cout << "plane << iplane << sect or << isec << cont ai ns

<< theHits.size() << " hits" << endl;

for (int i=0; i<theH ts.size(); i++) {
cout << theHits[i]->position() << endl;
cout << theHits[i]->charge() << endl;
cout << theHits[i]->padsIinH t() << endl << endl;
cout << theHits[i]->timebinsinH t() << endl << endl;

assert(theHits[i]->plane() == iplane);
assert(theHits[i]->sector() == isec);
}
3.6.3 SVT hits

The SVT consist of 3 barrels (6 layers) with up to 16 (8) ladders each. Each ladder has up to 7 wafers. Con-
sequently the St Svt Hi t class provides methods to return the local coordinates exactly in these “units”:
barrel () returns 1-3, | ayer () returns 1-6, | adder () returns 1-16, and waf er () returns 1-7.
If you are puzzled why these numbers start at 1 have a look at section 2.3.1. Because of the more de-
tailed local coordinates there is not enough space to store any further details on the hits as it is the case
for the TPC and FTPC. The SVT hits are stored in a tree organized as shown in Fig. 3.12. The top collection
(St Svt Hi t Col | ect i on)contains 3 barrel collections. Each barrel collection (St Svt Barr el Hi t Col | ecti on)

34

3 THE STEVENT MODEL 3.6 Hits

contains up to 16 ladder collections and each (St Svt Ladder Hi t Col | ect i on) contains up to 7 wafer
collection (St Svt Waf er Hi t Col | ect i on). The latter finally contains the hits. With other words, the
hits are stored per wafer. Each of the shown classes provide a method (nurber O Hi t s()) to return the
number of hits stored in the referring subcomponent.

The following is the equivalent example to the two previous ones but for the SVT hits. The scheme is
always the same:

1; // 2nd barrel
10; // 11th | adder
3; [/l 4th layer

const int ibarrel
const int il adder
const int iwafer

cout << "barrel " << ibarrel << cont ai ns
<< event->svtH tColl ection()->barrel (ibarrel)->numberOfHits()
<< " hits" << endl;

St SPtrVecSvtH t& theHits =
event ->svt Hi t Col | ection()->barrel (i barrel)->l adder (il adder)->wafer(iwafer).hits();

cout << "barrel << ibarrel << ", ladder " << il adder
<< ", wafer << iwafer << " contains "
<< theHits.size() << " hits" << endl;

for (int i=0; i<theHts.size(); i++) {
cout << theHits[i]->position() << endl;
cout << theHits[i]->charge() << endl;

assert(theHits[i]->barrel () == ibarrel);
assert(theHits[i]->wafer() == iwafer);

}

3.6.4 SSD hits

The SSD consist of one layer of 20 ladders with 16 wafers each. The St SsdHi t class therefore provides
the two methods | adder () andwaf er () which return the appropriate "hardware’ coordinate. Note that
the numbering starts at 1 (see Sec. 2.3.1). In addition the class has member functions to return the strip
number and the cluster size of the p and n side, respectively. The SSD hits are stored in a tree organized
similar to the SVT (Fig. 3.12) but without the barrel collection (there’s only one). The hits are stored per
wafer.

The following is the equivalent example to the previous ones but for the SSD hits. Again the same scheme:

const int iladder
const int iwafer

2;
3;

cout << "The SSD has "
<< event->ssdHi t Col |l ection()->nunber O H ts()
<< " hits" << endl;

St SPtrVecSsdHi t & theHits =
event - >ssdHi t Col | ecti on()->l adder (i | adder)->wafer(iwafer). hits();

cout << "l adder " << il adder

35

3.7 Remarks on Hits and Vertices

3 THE STEVENT MODEL

for

<< ", wafer " << iwafer << cont ai ns
<< theHits.size() << " hits" << endl;

(int i=0; i<theH ts.size(); i++) {

cout << theHits[i]->position() << endl;
cout << theHits[i]->charge() << endl;
assert(theHits[i]->ladder() == il adder);
assert(theHits[i]->wafer() == iwafer);

3.7 Remarkson Hitsand Vertices

The fact that hits and vertices inherit from the same base class St Measur edPoi nt can be used wherever
positions and errors are what count. Take for an example a track fit. What you have to pass to the fitting
algorithm are the points and the errors. A fitter usually gives a damn if the position was taken in the SVT
or TPC. What counts are the coordinates and their weight which depends on the errors. To illustrate this
lets assume we have a helix fitting algorithm implemented in a fitter class MyOMSi npl eFitter. It
provides a method to add points and one to actually fit a helix to the points.

MyOmnSi npl eFi tter::addPoi nt s(vect or <St Measur edPoi nt *>) ;
MyOmnSi npl eFitter::apply();

Now we can put together a simple function which takes a track as argument, extract the points and the
vertex, and fills them in a vector. It doesn’t matter if the track is a global or a primary track or where ever
the hits may come from. This could look as follows:

void fill Points(vector<St MeasuredPoi nt*> vec,

{

}

if ('track) return;

/1
/1 First add hits
/1

St Track *track)

St TrackDet ectorInfo* info = track->detectorlnfo();

if (info)
for (int i=0; i<info->hits().size();
vec. push_back(info->hits()[i])

/1
!/ Add vertex
/1

if (track->vertex()) vec.push_back(track->vertex());

And things become really easy:

vect or <St Measur edPoi nt *> poi nts;

St Track *track;
MyOmnSi npl eFi tter fitter;
/1 get track from somewhere ...

36

3 THE STEVENT MODEL 3.8 TheEMC

fill Points(points, track);

/1 some print-out
for (int i=0; i<points.size(); i++)
cout << points[i]->position() << "\t’
<< points[i]->positionError() << endl;

fitter.addPoi nts(points);
fitter.apply();

[l ... nowprint the results ...

The same scheme can be applied when you want to draw points along a helix or sketch a helix by drawing
lines between its points.

You can mix vertices and hits freely as long as you stick to the functionality St Measur edPoi nt pro-
vides.

One can now sort the hits according to their radius p in cylindrical coordinates. This is easy using the STL
sort algorithm. All what is needed is the definition of the sort rule’:

struct conpareRadi usOf Points {
bool operator()(const StMeasuredPoint *x, const StMeasuredPoint *y)
return x->position().perp() < y->position().perp();
}

s
The following simple line does the job:

sort(points. begin(), points.end(), conpareRadi usCf Points());

38 TheEMC

... missing ...

37

3.9 The PHMD 3 THE STEVENT MODEL

39 ThePHMD

The Photon Multiplicity Detector (PMD) measures photon multiplcity event by event. It covers an 7 region
of -2.2to -3.5. It is equipped with Charge Particle Veto (CPV) detector having same granularity and placed
before the particle encounters the converter. The information stored from this detector is StEvent are hits
(StPhmdHit) and clusters (StPhmdCluster) kept in proper containers (StPhmdCollection, StPhmdDetector,
StPhmdModule).

Most useful objects for analysis purpose is StPhmdCluster which contains detail information about the
cluster and puts a tag on the cluster about its identity as obtained from particular discrimination method.

To obtain Phmd info from StEvent, one needs to navigate through following scheme.

(i) Obtain PhmdCollection from StEvent pointer.

(ii) PhmdCaollection contains two detector pointers (PMD and CPV)

(ii) Each detector has 12 modules and it has the clustercollection attached to each detector.
(iii) Each module has StPhmdHits attached to them, so that the module acts as hit container.

(iv) ClusterCollection is the container for StPhmdCluster.

3.10 TheRICH

The RICH classes, like those of the EMC do not depend on tables for their construction. They are directly
filled into the St Event structure during reconstruction and analysis. The St Ri chCol | ecti on is the
main container class which holds all of the objects associated with the RICH—that is the pixels, clusters,
and hits, and these are held in the ROOT based “STL-like” containers within St Event . This allows inter-
nal changes to be made within the St Ri chCol | ect i on without imposing overhead on the St Event
infrastructure, or changes to other users code, so long as the persistent objects fields do not change.

The RICH detector is in the curious situation that not all the Monte Carlo information is available at
the GEANT stage. Specifically a major source of background and spurious signals come from feed back
photons which are generated in the avalanche process of the signal generation, i.e. in the detector simulation
stage. For this reason it is necessary to keep track of the origin of the signals at the pixel level, and to include
the fractional contribution to all pixels from this process at the St Event level. Because of the relatively
small data volume that the RICH produces—the order of 1500 10 bit ADC values per central event, this is
not an overly large burden.

In the reconstruction stage of the analysis, the pixels are grouped into St Ri chCl ust er s based on topol-
ogy characteristics, and from these objects, hit positions are reconstructed. The St Ri chHi t follows the
generic hit structure defined in St Event for the various detectors. The St Ri chHi t is an object which
inherits from both St Measur edPoi nt and St Hi t . The position of the hit is available in STAR global
coordinates (as is required by the conventions of St Event) as well as the local coordinate system of the
RICH, so that analysis using various survey geometries can occur after the St Event structure exists. In
the case of Monte Carlo generated data, which includes embedded events, the process which spawned or
contributed to the hit is also recoverable. In the cases of merged hits that produce large clusters, the origin
of each individual pixel can be recovered by tracing back from the hit, to the cluster, to the pixel level. All
of these objects are kept in ROOT generated collections within the St Ri chCol | ect i on:

e St RichHi t Col | ecti on
e St Ri chCl usterCol | ection

e St Ri chPi xel Col | ecti on

38

3 THE STEVENT MODEL 3.10 TheRICH

For generic studies of efficiecy it is expected that St MCEvent will be utilized. However as mentioned
previously, the addition of pixel labelling in the internal St Ri chCol | ect i on infrastruture will allow us
to quantify, very accurately, the efficiency of utilizing a proximity match for the basis of these calcuations,
as well as study the effect of various modes and generations of feedback photons, and detector noise. This
labelling can also be extended to add a parameterized neutron background downstream of the GEANT
calculation should this prove to be a large source of additional background.

The RICH particle identification is initially expected to run at the St Event level. The identification al-
gorithm is currently based on calculating the areal photon density on the RICH pad plane for the different
particle hypthesis and selecting the most probable based on a selected set of criteria which will not be de-
tailed here. This algorithm is contained in a Maker module called the St RI CHPI DMaker which requires
St Event global tracks in addition to the St Ri chCol | ect i on as input.

The mode of accessing this data is shown below:

/1

/] retrieve the StEvent data structure

/1

St Event * mEvent ;

nEvent = (StEvent *) GetlnputDS("StRi chEvent");

if (!'nEvent) {
cout << "No St Event*\n";
cout << "Can not continue. Aborting...
return kSt Warn;

}

/1
/1l Get the StRichCollection
/1
St Ri chCol | ecti on* theRi chCol |l ecti on = nEvent->richCollection();
if (!'theRichCollection) {
cout << "StEvent::Ri chCollection does not exist\n";
cout << "Aborting...\n" << endl;
return kSt Warn;

}

/1

/] Get the Hts fromthe collection

/1]

if (!'theRichCollection->hitsPresent()) {
cout << "StRichCollection::hitCollection does not exist\n";
cout << "Aborting...\n" << endl;
return kSt Warn;

}

St SPtrVecRi chH t & theRichHits = theRi chCol |l ection->getRichHits();

<< endl ;

/1

/1l Get the d obal Tracks

/1

St SPt r VecTr ackNode& t heTr ackNodes = nEvent - >t rackNodes() ;

39

3.11 The L3 Trigger 3 THE STEVENT MODEL

3.11 ThelL3Trigger

The L3Trigger class looks in essence like the “little brother” of the StEvent class. It provides a subset
of the data member and methods from StEvent with respect to TPC hits, track nodes and vertices. This
allows, to some extend, to use exactly the same analysis code for the analysis of tracks and hits from the
L3 reconstruction as for the standard offline reconstruction chain. The only difference is that the user has
to replace

St Event * event;
/1
event - >soneMet hod() ;

with

St Event * event;
...
event - > 3Tri gger () - >sonmeMet hod() ;

Only the entry point event has to be replaced by event - > 3tri gger (). However, the level of
detail in the offline reconstructed data will always be somewhat larger and some information might not be
available in the L3 tree (e.g. certain PID traits, fit traits etc.).

3.11.1 Event Summary Information

In addition to the track/hit information the L3 tree also contians the complete trigger information of the
algorithms switched on for the given run and all neccessary counters for the cross section calculataion.
Global event information is stored in the St L3Event Sunmrar y class, whereas detailed outcome of the
algorithms is put into St L3Al gori t hnl nf o.

Since the L3 triggered events are in general not unbiased, e.g. the high-pt-RICH triggered events for a flow
analysis, the average user will want to sort out these event classes. Therefore a simple member function is
provided which checks how the event decision was made: unbiased, i.e. not triggered by a L3 algorithm,
or biased, i.e. triggered by L3. One exception is the L3 vertex algorithm, where a bias is not seen, or
exspected, for central events. This can be checked with a similar function.

The way to access this is shown below:

St Event * nyEvent;
nyEvent = (StEvent*)chai n->Get | nput DS(" St Event");

if (!'nyEvent) {
cout <<"No St Event found.\n";
return kStWarn;

}

/1
/1 Get L3 entry point
/1
nmyL3Trigger = (StL3Trigger*)myEvent->| 3Trigger();
if (!'nyL3Trigger) {

cout << "No |3 found inside StEvent.\n";

cout << "That nmeans |3 was switched off. \n";

40

3 THE STEVENT MODEL 3.11 The L3 Trigger

/1 return or continue, what ever you want
return kSt Warn;

}

/1
/1 Get L3 event sunmmary
/1
const StL3Event Summary* nyL3Event Sunmary = nyL3Tri gger->| 3Event Sunmary() ;
i f (!nyL3Event Sunmary) {
cout << "No I3 event summary found." << endl;
return kSt Varn;

}

/1

/1 now check the event

/1

i f (!nyL3Event Sunmary->unbi asedTrigger()) {
cout << "This event was triggered by L3. \n";
cout << "Accept vertex trigger only \n";
cout << "and skip the rest. \n";
if (!myL3Event Sunmary->zVertexTrigger())

conti nue;

3.11.2 Algorithm Information

The L3 algorithm information is stored in a pointer vector of St L3Al gor i t hm nf o type. Access point
is again the St L3Event Surmmar y class. Ideally every information for each running algorithm is provided
which is neccessary to define the algorithm and the mode it was running in, e.g. pre/postscaling factors and
run parameters. Please note that the unique algorithm id might not be enough to define it, since it’s possible
to run an algorithm twice at the same time with different parameter sets.

An additional pointer vector is kept to get the information of all algorithms which triggered the given
event to save the effort of looping over all algorithms. The following gives an example how to access the
algorithm information:

/1

/1 Get nunber of algorithns sw tched on

/1

unsi gned i nt nAlgorithns = nyL3Event Sunmary->nunber O Al gorithns();

/1
/1 Print info for all algorithns
/1
St SPt r VecL3Al gorithm nf o& myL3Al gl nfo = nyL3Event Summar y->al gori t hns();
for (int i=0; i<nAlgorithms; i++) {
cout << " alg id " << nyL3Alglnfol[i]->id()
<< ":\t #proc " << nmyL3Al gl nfo[i]->nunber O ProcessedEvent s()
<< "\t #accept " << nyL3Al gl nfo[i]->nunmber O Accept edEvent s()
<< "\t #build " << myL3Al gl nfo[i]->nunber Of Bui | dEvent s()
<< endl;

41

3.11 The L3 Trigger

3 THE STEVENT MODEL

/1

/1 Print id of triggered algorithns only

/1

St Pt r VecL3Al gorit hm nf o& myL3Tri gger Al gl nf o;

nmyL3Tri gger Al gl nfo = nmyL3Event Summar y- >al gorit hmsAccepti ngEvent ();

for (int i=0; i<myL3TriggerAl glnfo->size();
cout << nyL3TriggerAlglinfo[i]->d() << "
}

42

i ++) {
' << endl;

3 THE STEVENT MODEL 3.11 The L3 Trigger

o aNROAR
{5

CEES

G < S 0
N N
AR o

Figure 3.8: Abstraction from a hierarchy

43

3.11 The L3 Trigger 3 THE STEVENT MODEL

StMeasuredPoint
(from common)

/\
StHit
. | stSsdHit
StTpcHit : (from other)
{from tpc) (ﬁgivst\;')'t StFtpcHit
(from ftpc)

Figure 3.9: The St Hi t class and its subclasses and superclasses.

StEvent
(from event)

1

0.. StTpcPixel
StTpcHitCollection

1

-mSectors

*

StTpcSectorHitCollection

1

-mPadrows
*

StTpcPadrowHitCollection StTpcHit

Figure 3.10: Class diagrams of the TPC hit storage scheme: sector/padrow.

44

3 THE STEVENT MODEL 3.11 The L3 Trigger

StEvent
/7 (from event)
1
#mFtpeHits
—
//
0.1
StFtpcHitCollection
1
-mPlanes
*
StFtpcPlaneHitCollection
’ 1
-mSectors
*
StFtpcSectorHitCollection StFtpcHit

Figure 3.11: Class diagrams of the FTPC hit storage scheme: plane/sector.

45

3.11 The L3 Trigger

3 THE STEVENT MODEL

46

1

-mBarrels

*

StSvtHitCollectiong 1

StSvtBarrelHitCollection

1

-mLadders

*

StSvtLadderHitCollection

1

-mWafers

*

StSvtWaferHitCollection

StEvent
(from event
./
#mSvtHits 1
= StSvtHit

Figure 3.12: Class diagrams of the SVT hit storage scheme: barrel/ladder/wafer.

3 THE STEVENT MODEL 3.11 The L3 Trigger

Figure 3.13: Mechanisms are the means whereby objects collaborate to provide some higher level be-
haviour.

47

4 WRITING MINIDSTS USING STEVENT

4 Writing MiniDSTs using StEvent

Following STARs terminology a miniDST is the next higher level in the DST hierarchy after the DST
itself. What follows are the microDST and nanoDST. The miniDST should be readable STAR-wide which
implies that it has to be based on StEvent. This has several advantages:

e programs and code that works based on StEvent can be used directly; in fact the analysis code
doesn’t have to change at all between DST and miniDST

e schema evolution comes for free

o the standard 10 maker handles the writing and reading of the miniDST

The miniDST contains a fraction of the StEvent data tree plus (optionally) user defined components. Which
fraction of StEvent gets written is up to the user. The obvious candidates to go on miniDSTSs are primary
tracks, vertices, or certain global tracks. There is also no rule which says that there can only be one
miniDST. It makes perfectly sense to keep different variants of miniDSTs. Some Physics Working Groups
might want highly compressed miniDSTs for rare probe searches since they deal with many events. Other
groups might want more complete miniDSTSs since they need less events in total. Several PWG can go for
a common miniDST, STAR can go for a common miniDST. This is a matter a choice. Important is that the
scheme does not limit us in our choice that there’s a way of achieving this.

The basic principle used in the implementation is not to copy and store information in a new scheme in a
different place (e.g. in a TTree or user defined format) but to remove those pieces of the current StEvent
one doesn’t need. The result is the same but removing or marking instread of copying is faster and more
efficient.

The extension for miniDSTs is . ndst . r oot .

4.1 The StEventScavanger class

To get remove unwanted objects from StEvent one can do two things: deleting them (operator del et e)
or marking them (using the zombie mechanism). Both methods require some level of expertise and there
are many things that can go wrong. What is needed is a way to savely remove arbitrary parts of StEvent in
a simple way. This is exactly what the St Event Scavanger class is for.

The class has only static member functions which means you can call them from everywhere in your code
without creating an instance of St Event Scavanger .
Example:

St Event* event = (StEvent *) GetlnputDS("StEvent");
St Event Scavenger: : r enobveEvent Summary(event);

St Event Scavenger: : r enbveSof t war eMoni t or (event);

St Event Scavenger: : renpveTpcHi t Col | ecti on(event);

St Event Scavenger: : renoveFt pcHi t Col | ection(event);

The class has methods to delete individual tracks, all hits, event summary, software monitors, and much
more (see section 5.20). Note, that most of these methods actually mark the objects and do not remove via
operator del et e. Marked objects will be ignored by the 10 maker and not written to the miniDST. So
don’t worry if you still see them after you called StEventScavenger. They won’t show up on the miniDST.

48

4 WRITING MINIDSTS USING STEVENT 4.2 An Example: StMiniDstMaker

4.2 An Example: StMiniDstM aker

The STAR library contains a complete example on how to write a miniDST. The example consist of the
St M ni Dst Maker maker and two macros: mDst Wi t e. Cand nDst Read. C.

The basic idea behind the example is to show how to write a miniDST of primary kaons which contains
nothing but the kaons and the trigger information.

The most important thing is that you use the macro nDst Wi t e. Cinstead of the usual doEvent s. C-
like macros. nDst W i t e. Cis especially setup to write StEvent read in from a DST into a single output
file. The version of the macro in the library calls the St M ni Dst Maker package to select what should
be written and what not.

So a typical run looks like this:

root4star -b
.x nDstWite. C(1000, "/ st ar/dat a03/reco/ POOhi/2000/09","*.dst.root", "nykaons");

In this case 1000 events will be read fromvarious*. dst . r oot filesinthe/ st ar/ dat a03/ r eco/ POOhi / 2000/ 09
directory and written to aminiDST with name mykaons. ndst . r oot . Forevery eventthe St M ni Dst Maker : : Make()
method selects the kaon tracks and removes the rest. To remove primary track which are not identified as

kaons the r enove(St Tr ack*) from St Event Scavanger class is used. The code looks as follows:

St SPtrVecPrimaryTrack& t heTracks = event->pri maryVertex()->daughters();
for (unsigned int i=0; i<theTracks.size(); i++)
if (laccept(theTracks[i]))
St Event Scavenger: : renove(theTracks[i]);

where accept (St Tr ack*) is a filter method defined in St M ni Dst Maker .

To read the file back use for example:

root4star -b
. X nDst Read. C(1000, "/ st ar/ dat a03/ r eco/ POOhi / 2000/ 09", "*. mdst . root ") ;

The mDst Read. C macro in the library actually calls the standard StAnalysisMaker. Of course one can
also create a macro which reads in a miniDSTs and writes out another, more compressed version of it.
Please note that St M ni Dst Maker, nDst Wi t e. C and nDst Read. Care only examples and should
be used as templates for you own purposes.

4.3 Advanced features
4.3.1 Using Zombies

Most methods of the St Event Scavanger class are based on the zombie” mechanism introduced by
Victor in Sep 2000. The scheme relies on the fact that all StEvent objects inherit from St Cbj ect and
St Obj ect itself has a few free user bits which can be used to mark the object. Once the object is marked it
becomes a zombie and will be ignored when the rest of StEvent is written to the miniDST. The object can
be marked by invoking the voi d St Obj ect : : makeZonbi e() method and the state of each object
can be checked with the bool St Obj ect: : i sZonbi e() method.

If you feel that your understanding of StEvent is sufficient enough you always can use the zombie mech-
anism directly. Once an object becomes a zombie also all references to the object will disappear on the
miniDST, i.e. pointer are nulled, at least. In this sense zombies are pretty save to use.

49

4.3 Advanced features 4 WRITING MINIDSTS USING STEVENT

Please note, that - as in the bad movies - zombies are visible. After an object is made a zombie you still
can use the same way as before. With other words it does not get deleted in memory.

4.3.2 Adding user defined classes

The miniDST mechanism is in principle not restricted to StEvent classes only. Objects of every class
which inherits from St Qbj ect and use the Cl assDef () and Cl assl| np() macros can be written to a
miniDST. You will need of course the class definition when you read the data back in. If the class definition
is not availabe the object cannot be retrieved from the miniDST; you still we be able to read the rest though.
Needles to say that it is the responsibility of the user to make sure the class is available to everyone who
tries to read the miniDSTSs.

Here’s a very simple example:

/1 StMyDstd ass. h
#i ncl ude " St Qbj ect . h"
class St MyDstC ass : public StQbject {
publi c:
St MyDst O ass() ;
i nt myCounter;
i nt eventl sGood;
G assDef (St MyDst O ass, 1) ;

b
The St MyDst O ass. cxx file of course has to exist and should contain

/1l St MyDstd ass. h
#i ncl ude "St MyDst C ass. h"

G asslmp();
St MyDst Cl ass: : St MyDst O ass()
{

ny Count er 0;

event | sGood = O;

}

All you have to do is to create an instance of this class in the Make () method of your maker (St M ni Dst Maker)
and attach it to StEvent

St MyDst Cl ass *my = new St MyDst Cl ass;
nmy->nmyCounter = 17,

my->event | sGood = 1;

event - >content (). push_back(ny);

From here on the St MyDst Cl ass object is integral part of StEvent and will be treated as such during
1/0. Please not that you are of course not limited to build in data types but can more complex ones as
pointers to St Tr ack objects for example. One could imagine to have a class St MyPai r which links two
tracks which form a pair to name just one of many applications.

50

Part 11

Reference M anual

51

5 CLASS REFERENCES

5 Class References

The classes which are currently implemented and available from the STAR CVS repository are listed in
alphabetic order.

Inherited member functions and operators are not described in the reference section of a derived class.
Always check the section(s) of the base class(es) to get a complete overview on the available methods.

In general each class has a public:

Default constructor

Copy constructor

Assignment operator

Virtual destructor

There are a few exceptions from this rule which are explained in the referring class reference.

Not every member function listed is explained in detail since many are trivial and their names are chosen
such that one can easily figure out what they are all about. Macros and | nl i ne declarations are omitted
throughout the documentation and so is the vi r t ual keyword. The state-of-the-art reference is always
the class definition in the header file.

SN m—-é .
=T
&)

]
=3

Figure 5.1: A class represents a set of objects that share a common structure and a common behavior.

52

5 CLASS REFERENCES 5.1 StBbcTriggerDetector

5.1 StBbcTrigger Detector

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude "StBbcTri ggerDet ector. h”
cl ass St BbcTri gger Det ect or;

St BbcTri gger Det ector () ;

unsi gned int number OfF PMIs() const;

unsi gned i nt number O Regi sters() const;

unsi gned i nt nunber O Pedest al Dat a() const;

unsi gned int number O Scal ars() const;

unsi gned short adc(unsigned int) const;

unsi gned short tdc(unsigned int) const;

unsi gned short bbcRegi ster(unsigned int) const;
unsi gned short pedestal Data(unsi gned int) const;
unsi gned int scal ar(unsigned int) const;

unsi gned short pedestal (unsigned int id) const;
unsi gned short pedestal Wdth(unsigned int id) const;
unsi gned short m p(unsigned int id) const;

unsi gned short m pWdth(unsigned int id) const;
int nHitEast();

int nH t\West();

int nHtAI();

i nt adcSunEtast ();

i nt adcSumhést () ;

int adcSumAl |l ();

float zVertex(); //z vertex in cm

voi d set Adc(unsi gned int, unsigned short);

voi d set Tdc(unsi gned int, unsigned short);

voi d set Regi ster(unsigned int, unsigned short);
voi d set Pedestal (unsi gned int, unsigned short);
voi d set Scal ar (unsigned int, unsigned int);
void dump();

53

5.2 StCalibrationVertex 5 CLASS REFERENCES

5.2 StCalibrationVertex

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

54

Represents vertices used for test and calibration purposes.

#include "StCalibrationVertex.h"
class StCalibrationVertex;

Concrete implementatin of the St Vert ex class. It represents various types of
vertices useful for calibration and diagnostics. These vertices have no daugh-
ters and no parent. All vertices of this category are of type KOt her Vt x1 d (see
St Vert ex: :type()). Don’t worry if you don’t what they are good for. There
are nor relevant for physics analysis.

Inherits from St Ver t ex. St Cal i br ati onVert ex doesn’t add any new data
member of methods.

StCal i brationVertex();
St Cal i brati onVertex(const dst_vertex_st&);

See St Ver t ex (5.108) for available methods.

5 CLASS REFERENCES 5.3 StContainers

5.3 StContainers

Summary Definitions of all container types used in StEvent.
Synopsis #i ncl ude " St Cont ai ners. h"
Description St Cont ai ner s. h includes St Arr ay. h which contains the guts of the con-

tainer implementation. In StContainer.h (and .cxx) the appropriate macros are
called to declare and define the container types. If a new container type has to
be defined it must be defined here and only here.

55

5.4 StCtbSoftwareMonitor 5 CLASS REFERENCES

5.4 StCtbSoftwareM onitor

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Data
Member

56

Monitors details of the Central Trigger Barrel (CTB) reconstruction.

#i ncl ude " St Ct bSof t war eNoni t or. h"
cl ass St ¢t bSof t war eMoni tor;

St Ct bSof t war eMoni tor () ;

St Ct bSof t war eMoni t or (const dst_non_soft_ctb_st&);

int mult ctb tot;
Total multiplicity (or ADC sum) in CTB.

5 CLASS REFERENCES 5.5 StCtbTriggerDetector

55 StCtbTrigger Detector

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

Interface to CTB event data.

#i ncl ude "StCt bTri gger Det ector. h"
class St bTri gger Det ect or;

Inherits from StObject.

St Ct bTri gger Detector();
St Ct bTri gger Det ect or (const dst_TrgDet _st&);

unsi gned int number Of Trays() const;
Returns number of CTB trays (usually 120).

unsi gned int number O Sl at s() const;
Returns number of slats (usually 2).

unsi gned i nt number O PreSanpl es() const;
Number of pre-samples taken.

unsi gned i nt nunber O Post Sanpl es() const;
Number of post-samples taken.

unsi gned i nt nunmber O AuxWbrds() const;
Number of auxiliary words (usually 16). No physical significance at present, these
data are simple reserved for possible future use.

float m ps(unsigned int tr, unsigned int sl, unsigned int evt = 0) cc
Return MIPS fortray t r and slot sl . The trays run from0—nunber O Tr ays() -
1, the slots from 0 — nunber OF Sl ot s() -1. The first half of the tray numbers
are for the west side, the second half for the east side (usually 0-59 on west end,
60-119 on east end). Each tray has 2 slats, O is the inner slat, closest to the central
membrane, and 1 is the outer slat, further from the central membrane. The last
argument evt has the following meaning:

0 is the triggered event, and from 1 to (npr esanpl es+npost sanpl es) are
the other "events”, in chronological order. For example, assuming 5 pre events and
5 post events:

evt =0 triggered eventatt=0

evt=1 1stpreeventatt=-5

evt=2 2ndpreeventatt=-4

evt =3 3rd preeventatt=-3

evt =4 1stposteventatt=-2

evt =5 2nd posteventatt =-1

evt =6 2nd posteventatt=+1

evt =7 2nd post eventatt = +2

evt =8 2nd post eventatt = +3

evt =9 2nd post eventatt = +4

evt =10 2nd post eventatt=+5

57

5.5 StCtbTriggerDetector

5 CLASS REFERENCES

58

char

time(unsigned int tray, unsigned int slot, unsigned int evt

Same arguments as for mi ps() (see above).

float aux(unsigned int, unsigned int evt = 0) const;
Argument i has no physical significance at present, these data are simple reserved
(on request of Hank Crawford) for possible future use. For the second argument
(evt)seem ps() above.

voi d
voi d
voi d
voi d
voi d

set M ps(unsigned int, unsigned int, unsigned int, float);
set Ti me(unsi gned int, unsigned int, unsigned int, char);
set Aux(unsigned int, unsigned int, float);

set Nunmber O Pr eSanpl es(unsi gned int);

set Nunmber O Post Sanpl es(unsi gned int);

= 0) con

5 CLASS REFERENCES 5.6 StDedxPidTraits

5.6 StDedxPidTraits

Summary

Synopsis #i ncl ude " St DedxPi dTraits. h"
cl ass St DedxPi dTraits;

Description

Related Classes
Public St DedxPi dTraits();
Constructors Default constructor.

St DedxPi dTraits(StDetectorld det, short emethod,

unsi gned short np, float dedx, float sig);
Create an instance of St DedxPi dTr ai t s for detector det, encoded method
enet hod, number of points np, dE/dx mean dedx, and error on mean si g.

Public Member unsi gned short nunber O Poi nts() const;
Functions Number of points used to calculate the dE/dx value.

float nean() const;
The derived dE/dx value.

float length() const;
Track length used in dE/dx calculations.

float errorOnMean() const;
Returns the error on the dE/dx value.
St DedxMet hod net hod() const;

short encodedMet hod() const;

59

5.7 StDetectorState

5 CLASS REFERENCES

5.7 StDetector State

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

60

Base class for detector state information.

#i ncl ude " St Det ect or St at e. h"
cl ass St DetectorState;

St Det ect or St at e is a non-abstract base class to hold information on the “state”
of a detector. All concrete classes reflecting the state of actual detectors need to in-
herit from this class in order to allow storage in St Event . The only data member
it contains are the detector ID and a Boolean to reflect the overall state (good/bad).
More detailed information may be added by the derived classes.

St Detector State();
St Detector State(StDetectorld, bool);

St Detectorld detector() const;
Returns detector ID (see 2.2).

bool good() const;
Return t r ue if the overall state of the detector is good, otherwise f al se.

bool bad() const;
Returns the negative of good() .

voi d setDetector(StDetectorld);
voi d set Good(bool) ;

5 CLASS REFERENCES

5.8 StEmcCluster

5.8 StEmcCluster

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude "St Enctd uster. h"
class StEntd uster;

St EncCl uster () ;

float eta() const;

float phi() const;

float signaEta() const;

float sigmaPhi () const;

float energy() const;

int nHits() const;

i nt nNei ghbors() const;

int nTracks() const;

StPtrVecEntRawHi t & hit () ;

const StPtrVecEntRawH t& hit() const;
St Pt r VecEntd ust er & nei ghbor () ;

const St PtrVecEntd uster& nei ghbor() const;
St PtrVecTrack& track();

const StPtrVecTrack& track() const;
void setEta(float);

voi d set Phi (float);

voi d set Si gmaEt a(fl oat);

voi d set Si gmaPhi (fl oat);

voi d setEnergy(float);

voi d addHi t (St EncRawHi t *) ;

voi d addNei ghbor (St EncCl uster*);

voi d addTrack(St Track*);

void print(ostream& os = cout) const;

61

5.9 StEmcClusterCollection 5 CLASS REFERENCES

59 StEmcCluster Collection

Summary

Synopsis #i ncl ude " St EncC usterCol | ection. h"
class StEntC usterCollection;

Description

Related Classes

Public St Encd ust er Col | ection();
Constructors

Public Member St Detectorld detector() const;
Functions voi d setDetector(StDetectorld);

i nt nunmber O C usters() const;

St SPt r VecEntCl uster & cl usters();

const St SPtrVecEncC uster& clusters() const;
voi d addC uster (St EncC uster*);

int clusterFinderld() const;

i nt cl usterFinderParanVersion() const;

void setCl usterFinderld(int);

voi d set C ust er Fi nder Par anVer si on(int);

62

5 CLASS REFERENCES 5.10 StEmcCollection

510 StEmcCollection

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude " St EntCol | ecti on. h"
class StEntCol |l ection;

St EntCol | ection();

St EncDet ect or* detector(StDetectorld);

const StEntDetector* detector(StDetectorld) const;
St SPt r VecEntPoi nt & barr el Poi nts();

const St SPt rVecEnctPoi nt & barrel Points() const;

St SPt r VecEntPoi nt & endcapPoi nts() ;

const St SPt r VecEntPoi nt & endcapPoi nt s() const;

voi d addBarr el Poi nt (const St EncPoi nt*);

voi d addEndcapPoi nt (const St EncPoi nt *) ;

voi d set Det ector (St EncDet ector*);

63

5.11 StEmcDetector

5 CLASS REFERENCES

511 StEmcDetector

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

64

#i ncl ude " St EntDet ect or. h"
cl ass St EntDet ector;

St EncDet ect or () ;
St EncDet ect or (St Det ectorl d, unsigned int);

St Detectorld detectorld() const;

unsi gned i nt nunber O Modul es() const;

bool addHit (St EntRawHi t*);

unsi gned int numberOfH ts() const;

St EncModul e* nodul e(unsi gned int);

const St EntModul e* nodul e(unsi gned int) const;
St EntCl uster Col | ection* cluster();

const StEntC usterCollection* cluster() const;
void setC uster(StEncd usterCollection*);

5 CLASS REFERENCES 5.12

StEmcModule

512 StEmcModule

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude " St EntiMbdul e. h"
cl ass St EntMbdul e;

St EncModul e() ;

unsi gned int numberOfH ts() const;
St SPt r VecEntRawHi t & hits();
const StSPtrVecEntRawHi t & hits() const;

65

5.13 StEmcPoint

5 CLASS REFERENCES

5.13 StEmcPoint

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

66

#i ncl ude " St EntPoi nt. h"
cl ass St EntPoi nt ;

St EncPoi nt () ;

St EncPoi nt (const St Thr eeVect or F&,
const St ThreeVect or F&,
const St ThreeVect or F&,
unsigned int, float,
float, float,
unsi gned char = 0);

float energy() const;

float chi Square() const;

voi d set Energy(const float);

voi d set Chi Square(const float);

St ThreeVect or F si ze() const;

voi d set Si ze(const St ThreeVect or F&) ;

float energyl nDetector(const StDetectorld) const;

float sizeAtDetector(const StDetectorld) const;

voi d set Ener gyl nDet ect or (const StDetectorld, const float);
voi d set Si zeAt Det ect or (const StDetectorld, const float);
St PtrVecEntd uster& cluster(const StDetectorld);

const StPtrVeckEntCd uster& cluster(const StDetectorld) const;
voi d addCl uster(const StDetectorld, const StEntd uster*);
St Pt r VecEntPoi nt & nei ghbor () ;

const St PtrVecEntPoi nt & nei ghbor () const;

voi d addNei ghbor (const St EntPoi nt *);

int nTracks() const;

St PtrVecTrack& track();

const StPtrVecTrack& track() const;

voi d addTrack(St Track*);

5 CLASS REFERENCES

5.14 StEmcRawHit

514 StEmcRawHit

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude "St EntRawHi t. h"
class StEntRawHi t;

St EnctRawHi t () ;
St EncRawHi t (St Det ect or I d, unsigned int,
St EntRawHi t (St Detectorld, unsigned int,

St Detectorld detector() const;

unsi gned int nodul e() const;

unsigned int eta() const;

unsi gned int sub() const;

unsi gned int adc() const;

float energy() const;

void setld(StDetectorld, unsigned int,
voi d set Adc(const unsigned int);

voi d set Energy(const float);

unsi gned int,
unsi gned int,

unsi gned int,

unsi gned int,
unsi gned int,

unsi gned int);

67

L
L

5.15 StEmcSoftwareMonitor 5 CLASS REFERENCES

5.15 StEmcSoftwareM onitor

Summary

Synopsis #i ncl ude " St EncSof t war eMoni t or. h"
cl ass St EntSof t war eMoni t or;

Description

Related Classes

Public St Enc Sof t war eMoni t or () ;

Constructors St Enc Sof t war eMoni t or (const dst_non_soft_ent_st &) ;
Public Data fl oat energy_ent;

Member Total energy (or ADC sum) in EMC.

68

5 CLASS REFERENCES 5.16 StEnumerations

516 StEnumerations

Summary Header file which contains all enumeration types used in StEvent.
Synopsis #i ncl ude " St Enuner ati ons. h"
Description All enumeration types used in StEvent are defined in this header file. It also in-

cludes other header files which are common to all STAR code. For a complete list
of enum types see section 2.2.

69

5.17 StEmcTriggerDetector 5 CLASS REFERENCES

5.17 StEmcTrigger Detector

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

70

#i ncl ude " St EncTri gger Det ector. h"
cl ass StEntTri gger Det ector;

St EncTri gger Det ector () ;
St EncTri gger Det ect or (const dst_TrgDet _st&);

i nt nunber O Tower s() const;

i nt highTower (unsigned int) const;

i nt patch(unsigned int) const;

voi d set Hi ghTower (unsigned int, int);
voi d set Patch(unsigned int, int);

5 CLASS REFERENCES 5.18 StEvent

5.18 StEvent

Summary Event header and entry point to the StEvent tree.

Synopsis #i ncl ude " St Event. h"
cl ass St Event;

Description The class St Event is the key class to work with the whole StEvent tree. It itself
contains data which describes and characterizes the event and gives references and
pointers to all information there is in the event. Don’t forget to check for NULL
pointers if a method returns an object by pointer. Only if a method returns an
object by reference it is guaranteed to exist.

The package StEventMaker (see Sec. 2.6) provides a pointer to the current instance
of St Event .

Related Classes Class St Event inherits from St _Dat aSet .

Public St Event () ;

Constructors
St Event (const event header _st &,

const dst_event _sumary_st &,
const dst_summary_param st &) ;
St Event (const event _header _st &);
Public Member voi d Browse(TBrowser *) ;
Functions Overwrite inherited Br owse() method from St _Dat aSet . Method is invoked

from ROOT to allow interactive browsing of StEvent.

static const TString& cvsTag();
CVS tag of the version you are using.

void statistics() const;
Prints information to cout , as number of tracks, hits, vertices, event and run ID,
time, and more. This method can be also invoked from the ROOT GUI.

const TString& type() const;
Character string which contains a short description of the type of the event you got.

int id() const;
Unique event identifier.

int runld() const;
Unique run identifier.

int time() const;

Time when the event was taken. The format depends pretty much on the DST
version. Older DST version return HHMMSS while newer runs will return the
standard UNIX time. For the latter one then is able to use the many UNIX standard
tools available for this time format (e.g. cti me()).

unsi gned int triggerMsk() const;

unsi gned int bunchCrossi ngNurmber (Uint _t i) const;
Returns the bunch crossing numbers, i.e. two 32 bit words. i = O returns the
lowerandi = 1 the upper number.

71

5.18 StEvent

5 CLASS REFERENCES

72

St Event Sumar y* sumary() ;

const St Event Sunmary* sunmary() const;

Returns pointer to the event summary with many useful information for QA/QC
and event characterization.

St Event I nf o* i nfo();

const StEventlnfo* info() const;

Returns a pointer to the one and only instance of St Event | nf 0. St Event | nf o
provides no additional information but is solely used to hold the header data. Some
info can also be directly obtained from StEvent. See also 5.19.

St Runl nf o* runlnfo();

const St Runl nfo* runlnfo() const;

Returns a pointer to the one and only instance of St Runl nf 0. St Runl nf o con-
tains parameters related to the current run. See also 5.63.

St Sof t war eMoni t or* sof t wareMoni tor () ;

const St SoftwareMonitor* softwarehMonitor() const;

Returns pointer to the software-monitor collection. This class holds “monitors” for
every detector which contain information gathered during the event reconstruction.
Mostly statistic on number of hits, tracks etc.

St TpcHi t Col | ecti on* tpcH tCollection();

const St TpcHitCollection* tpcH tCollection() const;
Pointer to the TPC hit collection. If no hits are stored on the DST this pointer is
NULL. You better check for this.

St Ft pcHi t Col | ection* ftpcH tCollection();

const StFtpcH tCollection* ftpcHitCollection() const;
Pointer to the FTPC hit collection. If no hits are stored on the DST this pointer is
NULL. You better check for this.

St Svt Hit Col | ection* svtHi tCollection();

const StSvtHitCollection* svtH tCollection() const;
Pointer to the SVT hit collection. If no hits are stored on the DST this pointer is
NULL. You better check for this.

St SsdHi t Col | ecti on* ssdHitCol |l ection();

const St SsdHitCollection* ssdHitCol |l ection() const;
Pointer to the SSD hit collection. If no hits are stored on the DST this pointer is
NULL. You better check for this.

St Ri chCol | ection* richCollection();
const StRichCollection* richCollection() const;

St Tof Col | ection* tof Collection();
const St Tof Coll ection* tofCollection() const;

St FpdCol | ecti on* fpdCol | ection();
const St FpdCol | ection* fpdCollection() const;

St PhndCol | ecti on* phndCol | ecti on();
const St PhnmdCol | ection* phndCol | ection() const;

St LOTrigger* |0Trigger();
const StLOTrigger* |10Trigger() const;

5 CLASS REFERENCES 5.18 StEvent

St L3Trigger* |3Trigger();
const StL3Trigger* |3Trigger() const;

St Tri gger Det ect or Col | ection* triggerDetectorCollection();

const St TriggerDetectorCollection* triggerDetectorCollection() const;
Returns pointer to the current trigger detector collection. Trigger detectors are

CTB, ZDC, VPD, and MWC.

St TriggerldCol |l ection* triggerldCollection();
const StTriggerldCollection* triggerldCollection() const;
Contains trigger IDs (summaries) starting at RUN 111 (2003).

St Tri ggerDat a* triggerData();
const StTriggerData* triggerData() const;
Contains all trigger information. Implemented for Run 111 (2003).

St Tri gger Det ect or Col | ecti on* triggerDetectorCollection();
const StTriggerDetectorCollection* triggerDetectorCollection() const;

St SPtr VecTr ackDet ect or I nfo& trackDet ectorl nfo();
const St SPtrVecTrackDet ectorlnfo& trackDetectorlnfo() const;

St SPt r VecTr ackNode& trackNodes() ;
const St SPtrVecTrackNode& trackNodes() const;

unsi gned int numberOf PrimaryVertices() const;

Number of primary vertices (aka event vertices). Usually there is only one but fu-
ture implementations of the vertex finder will be able to also detect pile-up vertices
in which case you better check the number before dealing with the event.

St PrimaryVertex* primaryVertex(unsigned int i = 0);
const StPrimaryVertex* primaryVertex(unsigned int i = 0) const;
Returns pointer to the i “th primary vertex. Since in most of the cases there is only
one primary vertex i defaults to the first (i =0).

The primary vertices are ordered according to the number of daughters (i.e. pri-
mary tracks) they hold. The first in the list is always the the vertex with the most
daughter tracks.

unsi gned int numberOf Cal i brationVertices() const;
Number of vertices stored for calibration and test purposes.

St Cal i brationVertex* calibrationVertex(unsigned int i);
const StCalibrationVertex* calibrationVertex(unsigned int i) const;
Returns pointer to the i "th “calibration’ vertex. Calibration vertices are of type
St Cal i brati onVert ex (see 5.2) and are mainly used for test, calibration, and
diagnosis. Not relevant for physics analysis.

St SPt r VecVOVer t ex& vOVertices();

const St SPtrVecVOVertex& vOVertices() const;

Returns container with VO vertices.

St SPt r VecXi Vertex& xi Vertices();

const St SPtrVecXi Vertex& xi Vertices() const;

Returns container with Xi vertices.

St SPt r VecKi nkVert ex& ki nkVertices();

const St SPtrVecKi nkVertex& ki nkVertices() const;
Returns container with kink vertices.

73

5.18 StEvent

5 CLASS REFERENCES

74

St SPtr VecObj ect & content () ;

Returns the content of St Event . Use with great care!

The class St Event itself is, technically spoken, not much more than a container of
objects of type St Obj ect . Itis the level of sophistication in the member functions
which gives the class its look-and-feel. Any class inheriting from St Cbj ect can

be added to StEvent and such be made persistent. To add use:

St Event: : content (). push_back(St Obj ect*);

Of course it is now also your job to retrieve the object from the list. This is best

done using the C++ RTTI mechanism.

StDetectorState* detectorState(StDetectorld det);

const StDetectorState* detectorState(StDetectorld det) const;
Returns pointer to detector “state” object referring to detector det . For St Det ect or | d
see 2.2. Note that returned pointer might point to a class derived from St Det ect or St at e.
In this case a dynami c_cast is required unless you are only interested in the
overall detector state which is obtained via St Det ect or St at e: : good() . If

no “state” object for the referring detector is available a NULL pointer is returned.

St Psd* psd(StPwg pwg, int id);

const StPsd* psd(StPwg pwg, int id) const;

Retrieve Physics Summary Data (PSD) from physics working group pwyg (for St Pwg

see 2.2) with identifier i d. Returns nul | if not present.

unsi gned i nt nunmber O Psds();

Returns number of all PSDs stored in St Event .

unsi gned i nt nunber O Psds(St Pwg pwg) ;

Returns number of all PSDs from Physics Working Group pwg stored in St Event .
voi d set Type(const char*);

void setRunld(int);

void setld(int);

void setTime(int);

voi d set Tri gger Mask(unsi gned int);

voi d set BunchCrossi ngNunber (unsi gned i nt, unsigned int);
voi d set Sunmar y(St Event Sunmar y*) ;

voi d set | nfo(StEventlnfo*);

voi d set Runl nf o(St Runl nf 0*) ;

voi d set Sof t war eMbni t or (St Sof t war eMoni t or *) ;

void set TpcHit Col | ection(St TpcHit Col | ection*);

void setFtpcH tCol |l ection(StFtpcHi tCollection*);

5 CLASS REFERENCES 5.18 StEvent

void setSvtHi tCol | ection(StSvtHitCollection*);

void setRi chCol | ecti on(StRi chCol | ecti on*);

voi d set Tof Col | ecti on(St Tof Col | ecti on*);

voi d set FpdCol | ecti on(St FpdCol | ecti on*);

voi d set PhndCol | ecti on(St PhndCol | ecti on*);

voi d setTri gger DetectorCol | ecti on(StTriggerDetectorCollection*);
void setTriggerldCollection(StTriggerldCollection*);

voi d setTrigger Dat a(St Tri gger Dat a*) ;

voi d set LOTri gger (St LOTri gger*);

voi d setL3Tri gger (StL3Trigger*);

voi d addPri maryVertex(StPrimaryVertex*);
Adds a primary vertex to the list. The vertices are automatically sorted according
to their number of daughter tracks (descending order).

voi d addCal i brati onVertex(StCalibrationVertex*);
voi d addDet ect or St at e(St Det ect or St at e*) ;

voi d addPsd(St Psd* psd);

Add PSD * psd to StEvent. This method checks if another PSD with identical
identifiers is already stored. If so, it prints an error message and doesn’t add the
object pointed to by psd. Note that after this call the object is owned by StEvent.
Don’t delete it. However, you can still modify it.

voi d removePsd(St Psd* psd);
Removes PSD pointed to by psd. Please note that psd itself is not nulled. The
pointer is not valid anymore once this method was invoked.

75

5.19 StEventinfo

5 CLASS REFERENCES

519 StEventinfo

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

76

StEvent header info

#i ncl ude " St Event | nfo. h"
cl ass St Event | nf o;

Please note that some information this class provides is already accessible directly
through the St Event class itself. This class is used hold general event related
information within St Event such as event and run number, event size, and the
time the event was recorded. For more information see 5.18.

St Event I nfo();
St Event | nf o(const event _header _st &) ;

const TString& type() const;

int id() const;

int runld() const;

int time() const;

unsi gned int triggerMask() const;
unsi gned int eventSi ze() const;

unsi gned int bunchCrossi ngNurmber (Uint _t i) const;
Returns the bunch crossing numbers, i.e. two 32 bit words. i = O returns the
lowerandi = 1 the upper number.

voi d set Type(const char*);

void setRunld(int);

void setld(int);

void setTime(int);

voi d set Tri gger Mask(unsi gned int);

voi d set BunchCrossi ngNunber (unsi gned i nt, unsigned int);
voi d set Event Si ze();

5 CLASS REFERENCES 5.20 StEventScavenger

5.20 StEventScavenger

Summary

Synopsis

Description

Related Classes

Public
Constructors

Helper class to ease creating miniDSTs based on StEvent

#i ncl ude " St Event Scavenger. h"
cl ass St Event Scavenger ;

The class contains only static member functions. These methods allow to delete, or
better mark, classes which you do not want to end up on the miniDSTs. For more
see section 4.

none

static bool renoveEvent Summary(St Event*);

static bool renoveSoftwareMnitor(StEvent*);
static bool removeTpcHit Collection(StEvent*);
static bool renmoveFtpcHitCollection(StEvent*);
static bool renmoveSvtHitCollection(StEvent*);
static bool renoveSsdHit Collection(StEvent*);
static bool renoveEntCol |l ection(StEvent*);
static bool renoveRi chCollection(StEvent*);
static bool renoveTriggerDetectorCollection(StEvent*);
static bool renovelL3Trigger(StEvent*);

static bool renmoveVOVertices(StEvent*);

static bool renoveX Vertices(StEvent*);

static bool renoveKi nkVertices(StEvent*);

static bool renove(StTrack*);

static bool renoveFpdCollection(StEvent*);
static bool renoveToFCol |l ection(StEvent*);
static bool renoveCalibrationVertices(StEvent*);

renoveTpcHi t sNot OnTr ack(St Event *) ;

Marks all TPC hits not associated with valid tracks. "Valid’ means that the track
will be written to the miniDST (i.e. the track exist and is not a zombie). This
method has to be called after the rejected tracks are removed. Do not remove the
TPC hits viar enoveTpcHi t Col | ecti on() if you use this method.

77

5.21 StEventSummary 5 CLASS REFERENCES

521 StEventSummary

Summary

Synopsis #i ncl ude " St Event Summary. h"
cl ass St Event Sunmary;

Description

Related Classes

Public St Event Sutmary() ;
Constructors St Event Summar y(const dst _event _sumary_st &,
const dst_sunmary_param st &) ;

Public Member
Functions

i nt nunber O Tracks() const;

i nt nunber O GoodTracks() const;

i nt nunber O GoodTr acks(St Char geSi gn) const;
i nt nunber O GoodPri maryTracks() const;

i nt nunber O Exoti cTracks() const;

i nt nunmber Of Vertices() const;

i nt nunber O VerticesOf Type(St Vertexld) const;
i nt nunber O Pi | eupVertices() const;

float neanPt() const;

float neanPt2() const;

fl oat neanEta() const;

float rnmsEta() const;

const St ThreeVector F& pri maryVert exPosition() const;
unsi gned i nt number O Bi ns() const;

i nt trackslnEtaBi n(unsigned int) const;

i nt trackslnPhi Bin(unsigned int) const;

i nt trackslnPtBin(unsigned int) const;
float energyl nEtaBi n(unsi gned int) const;
fl oat energyl nPhi Bi n(unsi gned int) const;
fl oat | ower EdgeEt aBi n(unsi gned int) const;
fl oat upper EdgeEt aBi n(unsi gned int) const;
fl oat | ower EdgePhi Bi n(unsi gned int) const;
fl oat upper EdgePhi Bi n(unsi gned int) const;
float | ower EdgePt Bi n(unsi gned int) const;
fl oat upper EdgePt Bi n(unsi gned int) const;

doubl e nmagneti cFi el d() const;
Returns z-component of magnetic field in kGauss.

voi d set Nunber O Tracks(int);

voi d set Nunber OFf GoodTr acks(int);

voi d set Number OF GoodTr acks(St ChargeSi gn, int);
voi d set Number OF GoodPri maryTracks(int);

voi d set Nunmber Of Negati veTracks(int);

voi d set Nunber O Exoti cTracks(int);

voi d set Nunber O Vertices(int);

voi d set Nunmber O Verti cesFor Type(St Vertexld, int);

78

5 CLASS REFERENCES 5.21 StEventSummary

voi d set Nunber O Pi | eupVertices(int);

voi d set MeanPt (fl oat);

voi d set MeanPt 2(fl oat);

voi d set MeanEt a(fl oat);

void set RnsEt a(fl oat);

voi d setPrimaryVertexPosition(const StThreeVectorF&);
voi d set Magneti cFi el d(doubl e);

79

5.22 StEventTypes 5 CLASS REFERENCES

522 StEventTypes

Summary Header files which contains all type definition used in StEvent.
Synopsis #i ncl ude " St Event Types. h"
Description Since all StEvent classes contain only the minimum amount of declaration it could

become very tedious to find the right set of header files in your application. This
header files overcomes this problem. Include it and you are all set. See also section
2.1.

80

5 CLASS REFERENCES

5.23 StFpdCollection

5.23 StFpdCollection

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude " St FpdCol | ecti on. h"
cl ass St FpdCol | ecti on;

St FpdCol | ection();

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

i nt number OF ADC() const;

i nt nunber OF TDC() const;

i nt nunber O Regi sters() const;
i nt number O Pedestal () const;
short* adc();

short* tdc();

short

regi sters(unsigned int) const;

short* pedestal ();
int token() const;

short
short
short
short
short
short
short
short

nort h(unsigned int);
sout h(unsi gned int);
top(unsigned int);
bott om{unsi gned int);
snmdx(unsigned int);
snmdy(unsigned int);
presl(unsigned int);
pres2(unsigned int);

voi d set Adc(unsi gned int, unsigned short);
voi d set Tdc(unsi gned int, unsigned short);
voi d set Regi ster(unsigned int, unsigned short);
voi d set Pedest al (unsi gned int, unsigned short);
voi d dump();

81

5.24 StFtpcHit 5 CLASS REFERENCES

524 StFtpcHit

Summary

Synopsis #include "StFtpcH t. h"
class StFtpcHt;

Description

Related Classes
Public StFtpcHi t();
Constructors

St Ft pcHi t (const St Thr eeVect or F&,
const St ThreeVect or F&,
unsi gned int, float, unsigned char = 0);

St Ft pcHi t (const dst_point_st&);

Public Member unsi gned int sector() const;
Functions Returns sector number running from 1-6.

unsi gned int plane() const;
Returns plane number running from 1-20.

unsi gned int padslnH t() const;
unsigned int timebinsinHt() const;

82

5 CLASS REFERENCES

5.25 StFtpcHitCollection

525 StFtpcHitCollection

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude "StFtpcHi t Col | ection. h"
class StFtpcH tCollection;

St Ft pcHi t Col | ection();

bool addHit(StFtpcH t*);

unsi gned int numberOfH ts() const;
Total number of FTPC hits stored in the collection.

unsi gned int nunber O Pl anes() const;

St Ft pcPl aneHi t Col | ecti on* pl ane(unsigned int i);
const St FtpcPl aneHitCol |l ection* plane(unsi gned int
Indexi runs from 0—(n-1) where n = nurrber Of Pl anes() .

i) const;

83

5.26 StFtpcPlaneHitCollection 5 CLASS REFERENCES

526 StFtpcPlaneHitCollection

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

84

#i ncl ude " St Ft pcPl aneHi t Col | ection. h"
class St FtpcPl aneHitCol |l ection;

Instance of St Ft pcPl aneHi t Col | ect i onarestoredinthe St Ft pcHi t Col | ecti on.
The class holds a list of objects of type St Ft pcSect or Hi t Col | ect i on.

St Ft pcPl aneHi t Col | ection();
Default constructor.

unsi gned int nunmberOFH ts() const;
Number of hits stored in this FTPC plane.

unsi gned int number Of Sectors() const;
Number of sectors in this FTPC plane.

St Ft pcSectorHi t Col | ecti on* sector(unsigned int i);
const StFtpcSectorHitCollection* sector(unsigned int i) const;
Returns the i ’th sector, wherei = 0--(nunber Of Sectors()-1).

5 CLASS REFERENCES 5.27 StFtpcSectorHitCollection

5.27 StFtpcSectorHitCollection

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude " St FtpcSectorHitCol |l ection. h"
class StFtpcSectorHitCollection;

St Ft pcSector Hi t Col | ection();

St SPtrVecFtpcH t& hits();

const StSPtrVecFtpcHit& hits() const;

85

5.28 StFtpcSoftwareMonitor 5 CLASS REFERENCES

5.28 StFtpcSoftwareM onitor

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Data
Member

86

#i ncl ude " St Ft pcSof t war eMbni tor. h"
cl ass St Ft pcSof t war eMoni t or;

St Ft pcSof t war eMbni tor () ;

St Ft pcSof t war eMbni t or (const dst_non_soft _ftpc_st&);

int n_clus_ftpc[2];

Total number of clusters in FTPC, east/west.

int n_pts ftpc[2];

Total number of space points in FTPC, east/west.
int n_trk ftpc[2];

Total number of tracks in FTPC east/west .
float chrg ftpc tot[2];

Total charge deposited in FTPC, east/west.
float hit_frac_ftpc[2];

Fraction of hits used in FTPC, east/west.

float avg_trkL_ftpc[2];

Average track length (cm) FTPC, east/west

or average number of points assigned.

float res_pad_ftpc[2];

Average residual, pad direction, FTPC east/west.
float res_drf_ftpc[2];

Average residual, drift direction, FTPC east/west.

5 CLASS REFERENCES

5.29 StFunctional

5.29 StFunctional

Summary

Synopsis #i ncl ude " St Functional . h"

Description

87

5.30 StGlobalSoftwareMonitor 5 CLASS REFERENCES

5.30 StGlobal SoftwareM onitor

Summary

Synopsis #i ncl ude " St @ obal Sof t war eMoni t or. h"
cl ass St d obal Sof t war eNbni t or;

Description

Related Classes

Public St @ obal Sof t wareMoni tor();

Constructors St @ obal Sof t war eMoni t or (const dst_non_soft_gl ob_st &);
Public Data int n_trk _match[2];

Member Total number of SVT-TPC tracks matched with tan(dip angle) < 0 (> 0).

int primvrtx_ntrk;
Number of tracks used in primary vertex fit.

float primyvrtx_cov|[6];
Primary vertex covariance matrix.

float primuvrtx_chisq;
Primary vertex x?2 of fit.

88

5 CLASS REFERENCES 531 StGlobalTrack

531 StGlobalTrack

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude " St d obal Track. h"
cl ass St d obal Track;

St A obal Tr ack is derived from St Tr ack. See also St Pri mar yTr ack.

St d obal Track();

St d obal Track(const dst_track_st&);

St d obal Track(const St d obal Trackg&) ;

St d obal Track& operat or =(const St d obal Trackg&) ;

St TrackType type() const;
Returns always gl obal .

const StVertex* vertex() const;
Returns always nul | .

89

5.32 StHelixModel

5 CLASS REFERENCES

5.32 StHelixModel

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

90

#i ncl ude " St Hel i xModel . h"
cl ass St Hel i xModel ;

Inherits directly from St Tr ackGeonet ry.
St Hel i xModel () ;

St Hel i xModel (short g, float psi, float c, float dip,
const St ThreeVector F& o, const St ThreeVector F& p);

St Hel i xModel (const dst_track_st&);

St TrackModel nodel () const;

short charge() const;
Charge in units of +e.

doubl e curvature() const;
Curvature incm~1,

doubl e psi () const;
Psi in radians.

doubl e di pAngl e() const;
Dip angle in radians.

const St ThreeVectorF& origin() const;
Origin in cm.

const St ThreeVect or F& nonentun{) const;
Momentum in GeV/c.

St Physi cal Hel i xD hel i x() const;

5 CLASS REFERENCES 5.33 StHit

533 StHit
Summary Base class for hits.
Synopsis #include "StHi t. h"
class StHit;
Description
Related Classes St Hi t isderived form St Measur edPoi nt . St TpcHi t,St Svt Hit, St SsdHi t,
StRi chHi t, St Ft pcHit,and St EncPoi nt inherit from this class.
Public StHt();
Constructors StHit (const StThreeVector F&,
const St Thr eeVect or F&,
unsi gned int, float, unsigned char = 0);
Public Member float charge() const;
Functions Total charge of hit.
unsigned int flag() const;
Returns status flag.
unsi gned int usedlnFit() const;
Returns flag providing info on if this hit was actually used in one of the various
track fits.
unsi gned int trackReferenceCount() const;
Returns the number of tracks associated with that hit.
St Detectorld detector() const;
St ThreeVect or F positionError() const;
St Matri xF covariant Matri x() const;
Returns covariant matrix. In unknown (or not overwritten) simply fills the diagonal
elements with the errors obtained via posi ti onError ().
voi d set Charge(float);
voi d set Fl ag(unsi gned char);
voi d setFitFlag(unsigned char);
voi d set TrackRef er enceCount (unsi gned char);
voi d set Har dwar ePosi ti on(unsi gned int);
voi d setPositionError(const StThreeVectorF&);
St PtrVecTrack rel at edTracks(const St SPtrVecTrackNode&, StTrackType);
Public Member i nt operator==(const StHit&) const;
Operators int operator!=(const StHt&) const;

91

5.34 StKinkVertex 5 CLASS REFERENCES

534 StKinkVertex

Summary

Synopsis #i ncl ude " St Ki nkVertex. h"
cl ass St Ki nkVert ex;

Description

Related Classes

Public St Ki nkVertex();

Constructors St Ki nkVertex(const dst_vertex_st&, const dst_tkf_vertex_st&);
Public Member StVertexld type() const;

Functions unsi gned i nt nunmber O Daught ers() const;

St Track* daughter(unsigned int = 0);

const St Track* daughter(unsigned int = 0) const;
St PtrVecTrack daughters(StTrackFilter&);
StParticl eDefinition* pidParent () const;
StParticl eDefinition* pidDaughter() const;

unsi gned short geantl| dParent() const;

unsi gned short geant| dDaughter() const;

fl oat dcaParent Daughter() const;

fl oat dcaDaught er Pri maryVertex() const;

fl oat dcaParent PrimaryVertex() const;

float hitDi stanceParent Daughter() const;

float hitDi stanceParentVertex() const;

float dE(unsigned int i) const;

fl oat decayAngl e() const;

fl oat decayAngl eCM) const;

const St ThreeVect or F& par ent Monentun() const;
St Thr eeVect or F& par ent Monent um() ;

const St ThreeVect or F& daught er Moment un() const;
St Thr eeVect or F& daught er Morrent umn() ;

voi d set Geant | dPar ent (unsi gned short);

voi d set Geant | dDaught er (unsi gned short);

voi d set DcaPar ent Daught er (fl oat);

voi d set DcaDaught er Pri maryVertex(fl oat);

voi d set DcaParent Pri maryVertex(fl oat);

voi d set Hi t Di st ancePar ent Daught er (fl oat);

voi d set Hi t Di st anceParent Vertex(float);

voi d setdE(unsigned int, float);

voi d set DecayAngl e(fl oat);

voi d set DecayAngl eCM fl oat) ;

voi d set Parent Moment um(const St Thr eeVect or F&) ;
voi d set Daught er Monent unm(const St Thr eeVect or F&) ;
voi d addDaught er (St Tr ack*) ;

voi d renmpoveDaught er (St Track*) ;

92

5 CLASS REFERENCES 5.35 StLOTrigger

535 StLOTrigger

Summary

Synopsis #i ncl ude "StLOTrigger.h"
class StLOTrigger;

Description

Related Classes

Public St LOTrigger();

Constructors St LOTri gger (const dst_LO_Trigger_st&);
Public Member unsi gned int coarsePi xel ArraySi ze();
Functions i nt coarsePi xel Array(unsigned int i);

Index texttti runs from 0 to coar sePi xel ArraySi ze() - 1.

int meCbMwiltiplicity() const;

int mvacCtbDi pol e() const;

i nt mwvcCt bTopol ogy() const;

i nt mvcCtbMonent () const;

unsi gned short dsm nput() const;

unsi gned char detectorBusy() const;
unsi gned short triggerToken() const;
unsi gned short dsmAddress() const;
unsi gned char addBits() const;
unsigned int |astDsmArraySi ze() const;

unsi gned short |astDsmArray(unsigned int i);
Index texttti runs from 0 to | ast DsmArr aySi ze() - 1.

unsi gned int bcDataArraySi ze() const;
unsi gned short bcDat aArray(unsigned int i);
Index texttti runs from 0 to bcDat aAr raySi ze() - 1.

unsi gned int bunchCrossingld7bit(int run) const;
Takes run numbers as argument.

unsi gned int bunchCrossingld() const;

void setMweCtbMul tiplicity(int);

voi d set MwcCt bDi pol e(int);

voi d set MmcCt bTopol ogy(int);

voi d set MwcCt bMbrrent (i nt);

voi d set Coar sePi xel Array(unsigned int i, int val);

voi d set Dsml nput (unsi gned short);

voi d set Det ect or Busy(unsi gned char);

voi d set Tri gger Token(unsi gned short);

voi d set DsmAddr ess(unsi gned short);

voi d set AddBi t s(unsi gned char);

voi d setLast DsmArray(unsigned int i, unsigned short val);
voi d setBcDat aArray(unsi gned int i, unsigned short val);

93

5.36 StL1Trigger

5 CLASS REFERENCES

536 StL1Trigger

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

94

#i nclude "StL1Trigger.h"
class StL1Trigger;

Inherits from StTrigger.

StLA1Trigger();
StL1Trigger(const dst_LO_Trigger_st& const dst_L1 Trigger_st&);

unsigned int triggerWrdPrine();

voi d set Tri gger Wor dPri ne(unsi gned int);

5 CLASS REFERENCES 5.37 StL3Algorithminfo

5.37 StL3Algorithminfo

Summary

Synopsis
Description
Related Classes
Public

Constructors

Public Member
Functions

L3 trigger algorithm information.

#i ncl ude "StL3Al gorithm nfo.h"
class StL3Al gorithm nfo;

This class contains the complete information which describes a running L3 trigger
algorithm and the algorithm results for this event.

St L3Al gorithm nfo();
St L3AI gorithm nfo(Al gorithm Data*);

int id() const;
Unique algorithm id, defined in L3 include-files.

bool on() const;
Returns t r ue, if algorithm was running for this event.

bool accept() const;
Returns t r ue, if algorithm accepted this event.

bool build() const;
Returns t r ue, if algorithm built this event.

i nt nunber O ProcessedEvent s() const;
Returns number of events this algorithm processed so far in this run. Returns - 1,
if this is undefined.

i nt nunber O Accept edEvent s() const;
Returns number of events this algorithm accepted so far in this run. Returns - 1, if
this is undefined.

i nt nunber O Bui | dEvent s() const;
Returns number of events this algorithm built so far in this run. Returns - 1, if this
is undefined.

int dataSi ze() const;
Returns size of dat a-array filled by the algorithm.

float data(int index) const;
Returns i ndex-th entry of dat a-array filled by the algorithm.

int preScal e() const;

i nt postScal e() const;

int intParaneterSize() const;
int intParaneter(int) const;

int floatParaneterSize() const;
float floatParameter(int) const;

void setCounters(int, int, int);
void setParanmeters(int*, float*);
voi d setPreScal e(int);

voi d set Post Scal e(int);

95

5.38 StL3EventSummary 5 CLASS REFERENCES

5.38 StL3EventSummary

Summary L3 event summary infomartion and access point to trigger algorithm information.

Synopsis #i ncl ude " St L3Event Sunmary. h"
cl ass St L3Event Summary;

Description This class contains the L3 event summary information, e.g. global counters, and
provides access to the trigger algorithm information. Member functions allow to
check the event type (unbiased by L3, vertex triggered or triggered by an L3 algo-
rithm) without the need to access the detailed trigger algorithm information.

Related Classes

Public St L3Event Summar y() ;

Constructors St L3Event Sumar y(Bank_L3_SUMVD*) ;
Public Member i nt nunber O ProcessedEvent s() const;
Functions Returns -1, if undefined for this event.

i nt nunber O Reconst ruct edEvent s() const;
Returns -1, if undefined for this event.

unsi gned int nunber O Tracks() const;
Total number of tracks found by L3. Note: This is not neccesarily the number
tracks stored in StEvent.

unsi gned int number O Al gorithns() const;
Number of L3 trigger algorithms switched on for this run.

bool unbi asedTrigger() const;
Returns t r ue, if this event is unbiased by L3.

bool zVertexTrigger() const;
Returns t r ue, if this event was accepted (and built) by the L3 vertex trigger.

St Pt rVecL3Al gorithm nfo& al gorithnsAccepti ngEvent ();
const StPtrVecL3Al gorithm nfo& al gorithmsAccepti ngEvent () const;
Returns vector of algorithms which accepted this event.

St SPt r VecL3Al gorithm nfo& al gorithms();
const St SPtrVecL3Al gorithm nfo& al gorithns() const;
Returns vector of all algorithms switched on for this run.

voi d addAl gorithnm(St L3Al gorithm nfo*);
voi d set Nunmber O Tracks(int);
voi d set Counters(int, int);

96

5 CLASS REFERENCES 5.39 StL3SoftwareMonitor

5.39 StL 3SoftwareM onitor

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Data
Member

#i ncl ude " St L3Sof t war eMoni tor. h"
cl ass St L3Sof t war eMoni tor;

St L3Sof t war eMoni t or () ;
St L3Sof t war eMoni t or (const dst_non_soft _| 3_st &);

int id algorithm

Id of the algorithm used in global L3.
int id_hardware;

Id of the hardware configuration.
short triggermask;

The result of the trigger inquiry.

int nTotal Hts ;
Total number of clusters in the event.

i nt nTotal Tracks;
Total number of tracks found by the tracker.

int nTotal Pri maryTracks;
Number of primary tracks found by the tracker.

short processorld[24] ;
Processor where the sector was reconstructed.

float vertex[3][24];
xyz coordinates of the vertex used for track finding.

short id_parani24];
The parameter set used in the tracker.

int nHits[24];
Number of clusters in the sector.

i nt nTracks][24];
Number of tracks found by the tracker.

int nPrimaryTracks|[24];
Number of primary tracks found by the tracker.

float cpuTi ne[24];
CPU time used by the tracker.

97

5.40 StL3Trigger

5 CLASS REFERENCES

540 StL3Trigger

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

98

L3 header and entry point to the L3 part of StEvent tree.

#i ncl ude "StL3Trigger.h"
class StL3Trigger;

This class is the entry point to the L3 tree of StEvent with exactly the same struc-
ture. In addition it provides access to the L3 event summary class.

St L3Trigger();

St L3Event Sunmar y* | 3Event Sunmar y() ;
const StL3Event Summary* | 3Event Summary() const;

St TpcHi t Col | ection* tpcHitCollection();
const St TpcHitCollection* tpcH tCollection() const;

St SPtr VecTrackDet ector I nfo& trackDet ectorlnfo();
const St SPtrVecTrackDet ectorlnfo& trackDetectorlnfo() const;

St SPt r VecTr ackNode& trackNodes();
const St SPtrVecTrackNode& trackNodes() const;

unsi gned int numberOf PrimaryVertices() const;
St PrimaryVertex* prinmaryVertex(unsigned int = 0);
const StPrimaryVertex* primaryVertex(unsigned int = 0) const;

voi d set L3Event Sunmar y(St L3Event Surmar y*) ;
voi d set TpcHi t Col | ection(St TpcHitCol | ection*);
voi d addPri maryVertex(StPrinmaryVertex*);

5 CLASS REFERENCES 5.41 StMeasuredPoint

541 StMeasuredPoint

Summary

Synopsis #i ncl ude " St Measur edPoi nt . h"
cl ass St Measur edPoi nt ;

Description

Related Classes

Public St Measur edPoi nt () ;

Constructors St Measur edPoi nt (const St Thr eeVect or F&) ;
Public Member const St ThreeVector F& position() const;
Functions St ThreeVector F positionError() const = O;

St Matri xF covariantMatrix() const = 0;
voi d setPosition(const StThreeVectorF&);

Public Member i nt operator==(const StMeasuredPoi nt&) const;
Operators i nt operator!=(const StMeasuredPoint&) const;

99

5.42 StMwcTriggerDetector 5 CLASS REFERENCES

5.42 StMwcTrigger Detector

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

100

Interface to the MWC event data.

#i ncl ude " St McTri gger Det ect or. h"
cl ass St MwcTri gger Det ect or;

Inherits from St Cbj ect .

St MreTri gger Det ector () ;
St MMcTr i gger Det ect or (const dst_TrgDet st &);

unsi gned int nunmber Of Sectors() const;
Number of MWC sectors (usually 24).

unsi gned i nt number O SubSect ors() const;
Number of MWC subsectors (usually 4).

unsi gned i nt number O PreSanpl es() const;
Number of pre-samples available.

unsi gned i nt nunber O Post Sanpl es() const;
Number of post-samples available.

unsi gned i nt nunmber O AuxWords() const;
Number of auxiliary words (usually 32). No physical significance at present, these
data are simple reserved for possible future use.

float m ps(unsigned int sec, unsigned int subsec, unsigned int evt = 0) ¢
Return MIPS for sector sec and subsector subsec. The sectors run from 0 —

nunber O Sect or s() -1, the subsectors from 0 —nunber Of SubSect or s() -

1. The first half of the sector numbers are for the west side, the second half for the

east side (usually 0-11 west, 12-23 east). Each sector has 4 subsectors, counting

from the beam pipe outwards. The last argument evt has the following meaning:

0 is the triggered event, and 1- (1+npr esanpl es+npost sanpl es- 1) are

the other "events”, in chronological order. For example, assuming 3 pre events and

2 post events:

evt =0 triggered eventatt=0
evt=1 1stpreeventatt=-3
evt =2 2ndpre eventatt=-2
evt =3 3rdpreeventatt=-1
evt=4 1stposteventatt=+1
evt =5 2nd post eventatt = +2

float aux(unsigned int i, unsigned int evt = 0) const;
Argument i has no physical significance at present, these data are simple reserved
(on request of Hank Crawford) for possible future use. For the second argument
(evt)seem ps() above.

voi d setM ps(unsigned int, unsigned int, unsigned int, float);
voi d set Aux(unsigned int, unsigned int, float);

voi d set Nunber O PreSanpl es(unsi gned int);

voi d set Number Of Post Sanpl es(unsi gned int);

5 CLASS REFERENCES 5.43 StPhmdCluster

543 StPhmdCluster

Summary Definitions of cluster objects used in PMD.

Synopsis #i ncl ude " St Phndd uster. h"
class St Phndd uster;

Description

Related Classes

Public St Phndd uster () ;

Constructors

Public Member i nt nodul e() const;

Functions Returns the supermodule number where the cluster belong. It is assumed that clus-

tering will be performed SM-wise.

i nt nunmber O Cel | s() const;
Returns the number of cells in the cluster.

float eta() const;
Returns eta value of the cluster.

float phi() const;
Returns phi value of the cluster.

float energy() const;
Returns the strength(cluster edep) of the cluster.

float sigma() const;
Returns spread(sigma) of the cluster.

int energyPid() const;
Returns cluster ID using MIP enegry cut.

int pid() const;
Returns cluster ID using CPV and PMD matching (or by other method).

int ncPid() const;
Returns Cluster ID from ManteCarlo track.

voi d set Modul e(int);

voi d set number Of Cel | s(int);
void setEta(float);

voi d set Phi (float);

voi d setEnergy(float);

voi d set Sigma(float);

voi d set EnergyPi d(int);
void setPid(int);

void set McPid(int);

Method for adding hits corresponding to that cluster. voi d addHi t (St PhndHi t *) ;
void print(ostream& os = cout) const;

Method for obtaining hits corresponding to that cluster. St Pt r VecPhnmdHi t & hit () ;
const StPtrVecPhmdHit& hit() const;

101

5.44 StPhmdClusterCollection 5 CLASS REFERENCES

544 StPhmdCluster Collection

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

102

Base class for PMD clusterCollecion.

#i ncl ude " St PhndCl ust er Col | ecti on. h"
#i ncl ude " St PhndH t. h"
cl ass St Phnmdd ust er Col | ecti on;

The PMD cluster collection class St Phndd ust er Col | ecti on is the con-
tainer for clusters in a subdetector.

St Phndd ust er Col | ection();

voi d del eteC usters();

voi d del et eC ust er (St PhndCl uster*);
voi d addd ust er (St PhmdC ust er *);

i nt nunmber OF Gl usters() const;

Returns the number of clusters.

St SPt r VecPhmdd ust er & cl usters();

const St SPtrVecPhndC uster& clusters() const;
int clusterFinderld() const;

i nt cl usterFinderParanVersion() const;

void setCl usterFinderld(int);

voi d set C ust er Fi nder Par anVer si on(int);

5 CLASS REFERENCES 5.45 StPhmdCollection

545 StPhmdCollection

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

Base class for PMD which includes both the subdetectors CPV and PMD.

#i ncl ude " St PhndCol | ecti on. h"
#i ncl ude " St PhndDet ect or. h"
cl ass St PhndCol | ecti on;

The PMD Collection class St PhndCol | ect i on keeps all information of both
the subdetectors(CPV/PMD).

St PhndCol | ecti on();

St PhndDet ect or * detector (St Detectorld);
Returns ID for subdetector.

const St PhndDet ector* detector(StDetectorld) const;
voi d set Det ect or (St PhndDet ect or *) ;

103

5.46 StPhmdDetector 5 CLASS REFERENCES

546 StPhmdDetector

Summary Class for subdetector (CPV/PMD)

Synopsis #i ncl ude " St PhndDet ector. h"
#i ncl ude " St PhndHi t. h"
#i ncl ude " St PhndModul e. h"
#i ncl ude " St PhndC ust er Col | ecti on. h"
cl ass St PhndDet ect or;

Description The PMD detector class St PhndDet ect or contains the hit information inside
St PhndMbdul e and the cluster information inside St PhndCl ust er Col | ecti on.There
are two instances of this class (CPV/PMD).

Related Classes

Public St PhndDet ect or () ;

Constructors St PhndDet ect or (St Det ect or 1 d) ;
Public Member StDetectorld id() const;

Functions Returns detector ID for CPV (25) and PMD (26).

unsi gned i nt number O Modul es() const;
Returns number of modules in each subdetector.

bool addHit (StPhndHit*);
unsi gned int numberOfH ts() const;
Return total number hits stored in each subdetector.

St PhndMbdul e* nodul e(unsi gned int);
i nt nodul eHi ts(unsigned int);
Returns number of hits stored in each module.

const St PhmdMbdul e* nodul e(unsigned int) const;
St Phndd ust er Col | ecti on* cluster();
Returns number of clusters stored in each subdetector.

const St PhmdC uster Col | ecti on* cluster() const;

voi d set C uster (St PhnmdC ust er Col | ecti on*);
voi d set Modul e(St PhndModul e*, int);

104

5 CLASS REFERENCES 5.47 StPhmdHit

547 StPhmdHit

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

Definition of hit object used in PMD

#i ncl ude " St PhndHi t. h"
class StPhndHit;

The PMD hit class St PhndHi t is the basic class which contains the description
of hit objects. The PMD consists of two subdetectors(CPV and PMD), each subde-
tectors has 12 supermodules of different sizes. Because of the PMD geometry the
hits are stored in each supermodule in a given subdetector(CPV or PMD).

St PhrdHi t () ;

i nt superMdul e() const;
Returns supermodule number running from 1-12.

i nt nodul e();
Returns Supermodule number.

i nt subDetector()const;
Returns subdetector number (CPV/PMD).

int row)const;
Returns row number in the supermodule.

i nt columm() const;
Returns column number in the supermodule.

float energy()const;
Returns energy deposition in each cell.

i nt adc()const;
Returns ADC in each cell.

Given below the methods to access various data members.

voi d set Super Modul e(int);
voi d set SubDet ector(int);
voi d set Rowint);

voi d set Col um(int);

voi d set Energy(int);

voi d set Adc(int);

105

5.48 StPhmdModule 5 CLASS REFERENCES

548 StPhmdModule

Summary Class for each supermodule having the hit information

Synopsis #i ncl ude " St PhndMbdul e. h"
cl ass St PhndModul e;

Description The PMD module class St PhndMbdul e takes hit information and stored in su-
permodulewise.

Related Classes

Public St PhmdModul e() ;

Constructors

Public Member unsi gned int numberOfH ts() const;
Functions Returns total number of hits in each supermodule.

St SPtr VecPhndHi t & hits();
const St SPtrVecPhndHit& hits() const;
returns the container of hits.

106

5 CLASS REFERENCES 5.49 StPrimaryTrack

549 StPrimaryTrack

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i nclude "StPrimaryTrack. h"
class StPrimaryTrack;

St PrimaryTrack();

St PrimaryTrack(const dst_track_st&);
StPrimaryTrack(const StPrimaryTrack&);

St PrimaryTrack& operator=(const StPrimaryTracky&);

St TrackType type() const;
const StVertex* vertex() const;
Returns always pri mary.

voi d set Vertex(StVertex*);
Returns pointer to actual primary (event) vertex.

107

5.50 StPrimaryVertex 5 CLASS REFERENCES

550 StPrimaryVertex

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

108

#i ncl ude "StPrimaryVertex.h"
class StPrimaryVert ex;

Inherits directly from St Ver t ex.

St PrimaryVertex();
St PrimaryVertex(const dst_vertex_st&);

StVertexld type() const;
unsi gned i nt number O Daught ers() const;

int flag() const;
Inherited from StVertex. It his mentioned here since the return value in the context
of the St Pri mar yVer t ex has a special meaning.

For primary vertices f | ag() returns the fitting iteration and error reporting as

follows (see also documentation for module evr _am F):

+yx1 for normal, successfully found primary vertex during the 3rd iteration

-yx3 for initial seed value

-yx2 for first iteration value

-yx1 for second iteration value

-yx4 for failed fit with Determinant of G =0.0, occuring during any iteration.

-yx5 for failed error covariance matrix evaluation during fit with Determinant of E
= 0.0, occuring during any iteration.

where

X is the event vertex id (for pileups). Zero means the triggered event vertex, x=1 is
the next one etc.

y is the detector id for prevertex finding only. y=0 is not prevertex, y=1 TPC
prevertex, y=2 SVT, y=3 FTPC etc. the detector id compliments this info.

St Track* daughter(unsigned int);
const St Track* daughter(unsigned int) const;

St Pt rVecTrack daughters(StTrackFilter&);

St SPt r VecPri maryTrack& daughters();
const St SPtrVecPrimaryTrack& daughters() const;

voi d addDaught er (St Track*) ;

voi d renmpoveDaught er (St Track*);

5 CLASS REFERENCES 5.50 StPrimaryVertex

voi d setParent (St Track*); // overwite inherited

109

551 StPsd

5 CLASS REFERENCES

551 StPsd

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

110

Abstract base class for all Physics Summary Data classes.

#i ncl ude " St Psd. h"
cl ass St Psd;

All PSD classes must inherit from this base class.

St Psd() ;
St Psd(St Pwg, int);

St Png pwg() const;
Returns the pwg to which this PSD belongs.

int id() const;
Returns the integer id of the PSD. One PWG can have several PSDs which can be
distinguished by this ID.

voi d set Pwg(St Pwg) ;
void setld(int);

5 CLASS REFERENCES 5.52 StRichCluster

552 StRichCluster

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

Description of a group of adjacent pixels from which hits are recontructed.

#i nclude "StRi chC uster. h"
class StRichCl uster;

The cluster is an intermediate reconstructed object which allows the traceback from
recontructed hits to single pixels. It is the level at which hit deconvolution algo-
rithms work upon.

StRi chd uster();
Empty Constructor.
StRi chC uster(int nPads, int nLocMax, int fPad,

float anpSum float anp2Sum float rne2);
Constucted given the number of pads, number of local maximum within the cluster,
first pad, sum of the amplitudes of the pads making up the cluster, the sum of the
squared amplitude and the rms squared of the cluster.

bool operator==(const StRi chC uster&) const;
Comparison of the pixels based on an exact match of all fields.

i nt nunber O Pads() const;
Accesses the number of pads the cluster comprises.

i nt nunber O Local Max() const;
Accesses the number of local maxima in the cluster.

int firstPad() const;
Accesses the first pad (in the pixel list).

float anplitudeSun() const;
Accesses the sum of the amplitudes of the pads identified with the cluster.

float anplitude2Sun() const;
Accesses the sum of the squares of the amplitudes of the pads identified with the
cluster.

float rms2() const;

Accesses the square of the RMS of the cluster.
float rms2Cal c();

Calculates the square rms of the cluster.

voi d i ncreaseNunber O Local Max() ;
Modifies the cluster object by increasing the number of local maxima by 1.

voi d i ncreaseNunber O Pads() ;
Modifies the cluster object by increasing the number of pads by 1.

voi d setFirstPad(int index);
Modifies the cluster object by setting the first pad of the cluster to index.

voi d set Nunber O Pads(i nt newNPads) ;
Modifies the cluster object by setting the number of pads in the cluster to newN-
Pads.

voi d updat eAnpl i tude(fl oat newanp);
Modifies the cluster object by setting the amplitude to newamp.

111

5.53 StRichCollection

553 StRichCollection

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

112

Contains all information of the Rich up until the point of hit reconstruction in

generic STL like StEvent containers.

#i ncl ude "StRi chCol | ection. h"
class StRichCollection;

The raw and reconstructed pixel and hit information is contained in the StRich-
Collection. The module called StRchMaker is reponsible for creating a “RichCol-
lection” and filling the pixels from the raw data and the clusters and hits from the

cluster and hit finding algorithms.
See StContainers.h.

St Ri chCol | ection();
Empty constructor. All containers must be added by “set” member functions.

const St SPtrVecRi chPi xel & get Ri chPi xel s() const;
Returns the collection of pixels.

St SPt r VecRi chPi xel & get Ri chPi xel s();
Returns the collection of pixels.

const St SPtrVecRi chC uster& getRi chCl usters() const;
Returns the collection of clusters.

St SPt r VecRi chd uster & get Ri chCl usters();
Returns the collection of clusters.

const StSPtrVecRichHit& getRi chHi ts() const;
Returns the collection of reconstructed hits.

StSPtrVecRichH t & getRi chHits();
Returns the collection of reconstructed hits.

const StPtrVecTrack& get Tracks() const;

Returns the collection of St Tr acks that have an St Ri chPi dTr ai t calculated

in the reconstruction.
St Pt rVecTrack& get Tracks();

Returns the collection of St Tr acks that have an St Ri chPi dTr ai t calculated

in the reconstruction.

voi d addPi xel (const St Ri chPi xel *);
Adds a single pixel to the pixel collection.

voi d addCl uster(const StRi chd uster*);
Adds a single cluster to the cluster collection.

voi d addHit (const StRichH t*);
Adds a single hit to the hit collection.

bool pixel sPresent() const;
Returns the condition if the pixel container is present in the RichCollection.

bool clustersPresent() const;
Returns the condition if the cluster container is present in the RichCollection.

bool hitsPresent() const;
Returns the condition if the hit container is present in the RichCollection.

5 CLASS REFERENCES

5 CLASS REFERENCES 5.54 StRichHit

554 StRichHit
Summary Description of a reconstructed hit on the detector pad plane.
Synopsis #include "StRichHi t. h"
class StRichHi t;
Description The hit object is the output from the cluster and hit finder. It specifies a recontructed
position of a track (charged or photon) which passes through the detector pad plane.
Related Classes Inherits from St Measur edPoi nt and St Hi t .
Public StRichHit ();
Constructors Empty Constructor.
St Ri chHi t (const St ThreeVector F& xg, const St ThreeVector F& dx);
Specify a hit by the global position, xg, and the error on this position, dx.
St Ri chHi t (const St ThreeVector F& xg, const St ThreeVect or F& dx,
unsi gned int hp, float g, float maxAdc, unsigned char tc);
Specify a hit by the global position, xg, the error on this position, dx, the hardware
position, hp, total integrated charge contained in the hit, g, the quantity of charge
on the pixel with the maximum amplitude within the hit, maxAdc and the number
of tracks associated with the hit, tc.
Public Member const St ThreeVectorF& | ocal () const;
Functions Returns the position of the hit in the local coordinate system of the detector.

const St ThreeVectorF& i nternal () const;
Returns the position of the hit in the interanl coordinate system of the detector.

float nmaxAnplitude() const;
Returns the amplitude of the pixel with the largest amplitude in the hit.

i nt clusterNunber() const;
Returns the number (index) of the cluster from which the hit was produced.

unsi gned short track() const;
Returns the row of the track table from which the hit is associated.

unsi gned int reservedLong() const;
Reserved for future use.

float reservedFl oat() const;
Reserved for future use.

St ThreeVect or F& | ocal () ;
Returns the position of the hit in the local coordinate system of the detector.

St ThreeVect or F& i nternal ();
Returns the position of the hit in the internal coordinate system of the detector.

unsi gned short number Of Pads() const;
Returns the number of pads from which a hit was constructed.

voi d set Nunber O Pads(unsi gned short);
Set the number of pads from which a hit was constructed.

voi d set MaxAnplitude(float);
Set the amplitude of the pixel with the maximum amplitude contained within the
cluster.

113

554 StRichHit

5 CLASS REFERENCES

114

voi d set Cl ust er Nunber (int);
Assign the cluster number (index) to which the it is associated.

voi d set Track(unsi gned int);
Set the track from which the hit is associated.

voi d set ReservedLong(unsigned int);
Reserved for future use.

voi d set ReservedFl oat (fl oat);
Reserved for future use.

5 CLASS REFERENCES 5,55 StRichMCHit

555 StRichMCHit

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

Description of a hit but adds Monte Carlo information to describe the origin of the
hit.

#include "StRi chMCHI t. h"
class StRi chMCHi t;

This class inherits from St Ri chHi t and contains the additional information of
the origin of the hit in the St Ri chMCI nf o class.

See St Ri chl nfo

StRi chMCHi t () ;
Empty consturctor.

St Ri chMCHi t (const St Thr eeVect or F& xg,
const St ThreeVect or F& dx);
Specify a hit by the global position, xg, and the error on this position, dx.

StRi chMCHi t (const St Thr eeVect or F& xg,
const St ThreeVect or F& dx,
unsigned int hp, float q,
fl oat maxAdc, unsigned char tc);

St Ri chMCHi t (const St Thr eeVect or F& xg,

const St ThreeVect or F& dx,

unsigned int hp, float q,

fl oat maxAdc, unsigned char tc,

St R chMCl nf 0& i nfo);
Specify a hit by the global position, xg, the error on this position, dx, the hardware
position, hp, total integrated charge contained in the hit, g, the quantity of charge
on the pixel with the maximum amplitude within the hit, maxAdc, the number of
tracks associated with the hit, tc, and the associated Monte Carlo information, info.

voi d set MCl nfo(const St Ri chMCl nf 0&) ;
Returns the Monte Carlo information associated with the hit.

const St R chMCl nfo& get MCI nfo() const;
Returns the Monte Carlo information associated with the hit.

115

5.56 StRichMClinfo

5 CLASS REFERENCES

556 StRichMCinfo

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

116

Contains the Monte Carle information associated with an object, be it a pixel, clus-
ter, or hit.

#i ncl ude " St R chMCl nf 0. h"
class StR chMl nf o;

This object contains Monte Carlo information so that the origin of an object, be it a
pixel, cluster, or hit can be traced. This is necessary so that the feed-back photons
may be accounted for and kept track.

See St Ri chMCHi t and St Ri chMCPi xel .

St Ri chMCl nfo();
Empty constructor.

StRi chMCInfo(int id, int gid, int trk,

float q, int process);
Specifies the Monte Carlo information of an object by specifying its track, id,
GEANT particle id, gid, parent track, trk, charge that it deposited, g, and process of
origin, process, be it unknown (0), a charged particle (1), a photon (2), a feedback
photon (4), or noise (8).

i nt operator==(const StRi chMCl nfo&) const;
Checks the equivalence based on the id, trk, and process field.

i nt operator!=(const StRi chMCl nfo&) const;
The complement of the equality operator.

int id() const;

Returns the index the track in the track table.
int gid() const;

Returns the GEANT id of the track.

int trackp() const;
Returns the index of the the parent track in the track table.

float charge() const;
Returns the charge deposited by the track in question.

int process() const;
Returns the type of process, be it unknown (0), a charged particle (1), a photon (2),
a feedback photon (4), or noise (8).

5 CLASS REFERENCES 5.57 StRichMCPixel

557 StRichMCPixel

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

The raw data information from the detector along with the Monte Carlo information
of the tracks which produced this information.

#i ncl ude " St Ri chMCPi xel . h"
class St R chMCPi xel ;

This class contains, in addition to the raw pixel information, the description of the
simulated (Monte Carlo) processes which contributed to its production.

See St Ri chPi xel ,and St Ri chMCI nf o.

St R chMCPi xel () ;
Empty constructor.

St R chMCPi xel (unsi gned i nt packedDat a) ;
Coded data of the pixel where the first 8 bits are the pad number, the second 8 bits
are the row, and the next 11 bits are the ADC value (11th bit indicates overflow).

St R chMCPi xel (unsi gned i nt packedDat a,

const St SPtrVecRi chMCl nfo0&);
Coded data of the pixel where the first 8 bits are the pad number, the second 8 bits
are the row, and the next 11 bits are the ADC value (11th bit indicates overflow) as
well as a list of the MC information.

i nt operator==(const StR chMCPi xel & const;
Equality operator based on the packed data ONLY.

i nt operator!=(const StR chMCPi xel & const;
Complement of the equality operator.

unsi gned short contributions() const;
Returns the number of tracks/processes contributing to the pixel.

voi d addl nfo(const StR chMCl nfo*);
Adds information to the Monte Carlo list.

void setlnfo(const StSPtrVecRi chMCl nfo&);
Specifies the Monte Carlo list.

const St SPtrVecRi chMCl nf o& get MCI nfo() const;
Returns the Monte Carlo information.

St SPt r VecRi chMCI nf 0& get MCI nf o() ;
Returns the Monte Carlo information.

117

558 StRichPid 5 CLASS REFERENCES

558 StRichPid

Summary This class contains information specific to a mass hypothesis of the track in ques-
tion. It contains the photons associated with the ring or band of the tracks as well
as parameters calculated for the photons. It also contains derived parameters which
are used in the algorithm of identifying the particles.

Synopsis #i ncl ude "StRi chPi d. h"
class StRichPid,;

Description

Related Classes

Public StRi chPi d();

Constructors

Public Member StRichPid(StParticleDefinition* particle, StThreeVectorD resid,
Functions float totAzim float totArea,

unsi gned short totHts, float trunAzim

float trunArea, unsigned short trunHits);

Constructor requires the particle type (particle), species dependent residual from
the extrapolated track (resid), the total Azimuthal angle (totAzim), total Area(totArea)
of the ring bands that are found on the pad plane, as well as the total number of pho-
tons/hits (totHits) as well as the corresponding quantities in the trucated ring bands.

i nt operator==(const StR chPid&) const;

voi d setRi ngType(StParticleDefinition* particle);

Sets the ring type according to the mass hypothesis.

voi d set M pResi dual (St ThreeVectorD t);

Sets the residual between the associated hit on the RICH pad plane and the extrap-
olated TPC track. This residual is calculated with the particle species dependent
momentum loss.

voi d set Total Azi nut h(fl oat);
Sets the total azimuthal angle of the ring seen on the pad plane.

voi d set Total Area(fl oat);
Sets the total area of the ring/bands seen on the pad plane.

voi d set Total Hits(unsigned short);
Sets the total number of photons/hits contained in the ring on the pad plane.

voi d set Truncat edAzi mut h(fl oat);
Sets the truncated azimuthal angle of the ring seen on the pad plane.

voi d set Truncat edArea(fl oat);
Sets the truncated area of the ring/bands seen on the pad plane.

voi d set Truncat edHi t s(unsi gned short);
Sets the total number of photons/hits contained in the truncated ring area on the pad
plane.

StParticleDefinition* getRi ngType() const;
Returns the ring type according to the mass hypothesis.

const StPtrVecRi chHit& get Associ at edRi chHits() const;
Returns the photons/hits associated with the mass hypothesis.

118

5 CLASS REFERENCES 5.58 StRichPid

St PtrVecRi chHi t & get Associ at edRi chHits();
Returns the photons/hits associated with the mass hypothesis.

int getParticl eNunber () const;
Returns the particle type (pdgEncoding) of the mass hypothesis.

St ThreeVect or D get M pResi dual () const;

Returns the residual between the associated hit on the RICH pad plane and the ex-
trapolated TPC track. This residual is calculated with the particle species dependent
momentum loss.

fl oat get Total Azi nuth() const;
Returns the total azimuthal angle of the ring seen on the pad plane.

fl oat getTotal Area() const;
Returns the total area of the ring/bands seen on the pad plane.

unsi gned short getTotal Hits() const;
Returns the total number of photons/hits contained in the ring on the pad plane.

float getTotal Density() const;
Returns the total area of the ring/bands seen on the pad plane.

fl oat get Truncat edAzi mut h() const;
Returns the truncated azimuthal angle of the ring seen on the pad plane.

fl oat get Truncat edArea() const;
Returns the truncated area of the ring/bands seen on the pad plane.

unsi gned short get TruncatedH ts() const;
Returns the total number of photons/hits contained in the truncated ring area on the
pad plane.

float getTruncatedDensity() const;
Returns the areal density of the truncated number of hits and area.

bool isSet(StRi chPidFl ag);
Checks the bit flags, as defined in St Enuner at i ons

void setBit(StRi chPi dFl ag) ;
Sets a bit flag, as defined in St Enunrer at i ons

void unSetBit(StRi chPi dFl ag) ;
Unsets a bit flag, as defined in St Enuner at i ons

119

5.59 StRichPidTraits 5 CLASS REFERENCES

559 StRichPidTraits

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

120

This is the PID Trait of a track that passes through the RICH detector. It contains
track specific information as well as a container of St Ri chPi d which in turn con-
tain information about the Cerenkov radiation associated with the rings associated
with a different mass hypothesis (7/K/p).

#i nclude "StRi chPidTraits. h"
class StRichPidTraits;

StRi chPidTraits();

i nt operator==(const StR chPidTraits&) const;

voi d addPi d(StRi chPi d*);

adds an St Ri chPi d to the container. This is data related to a “particle hypothe-
sis”. In the most general case there would be 3 such structures (7/K/p).

St SPt rVecRi chPid get All Pids();
Returns the container of the St Ri chPi ds.

const St SPtrVecRichPid getAll Pids() const;
Returns the container of the St Ri chPi ds.

StRi chPi d* getPid(StParticleDefinition* t);
Returns the St Ri chPi d associated to a the particle type t.

const StRichPid* getPid(StParticleDefinition* t) const;
Returns the St Ri chPi d associated to a the particle type t.

St R chSpectra* getRi chSpectra();
const St R chSpectra* getRi chSpectra() const;

voi d set Producti onVersion(int);

Label for the time which the St Ri chPi dTr ai t was produced. The default ver-
sion (for OFFICIAL production) has a value of -999. This allows us to keep track
of madifications if “St Event .root” files are subsequently reprocessed; another
production version is assigned.

void setld(int);
Set the probable id of the particle. This is not filled in the reconstruction.

void setProbability(float);
Set the probability of it being identified as an “id()”.

voi d set Associ atedM p(StRichHi t*);
Set the St Ri chHi t which is identified with being the match from the TPC track
extrapolation.

voi d set M pResi dual (const St ThreeVect or F&) ;
Set the residual or distance between the associated Mip and the match from the
TPC track extrapolation.

voi d set RefitResi dual (const St ThreeVectorF&);
Set the residual or distance between the associated Mip and the match from the
TPC track extrapolation AFTER a refit of the TPC track has been done.

5 CLASS REFERENCES 5.59 StRichPidTraits

voi d set Si gnedDca2d(fl oat);
Set the signed 2-dimensional dca (in bend-plane) as calculated from the parent
global of the track in question.

voi d set Si gnedDca3d(fl oat);
Set the signed 3-dimensional dca as calculated from the parent global of the track
in question.

i nt producti onVersi on() const;
Returns the production version under which the St Ri chPi dTr ai t was created.
Default or official STAR production is always -999.

i nt id() const;
Returns the probable id of the particle.

float probability() const;
Returns the probability that the particle is assigned an “id()”.

StRichHi t* associ atedM p() const;
Returns the St Ri chHi t which has been associated with the TPC track extrapola-
tion.

const St ThreeVect or F& mi pResi dual () const;
Returns the residual of associated MIP and the extrapolated TPC track.

const St ThreeVector F& refitResidual () const;
Returns the residual of associated MIP and the extrapolated TPC track AFTER a
refit of the track parameters has been done.

float signedDca2d() const;
Returns the signed 2-dimensional (bend-plane) distance of closest approach (dca)
between the global partner of the track and the primary vertex position.

float signedDca3d() const;
Returns the signed 3-dimensional distance of closest approach (dca) between the
global partner of the track and the primary vertex position.

voi d set Ri chSpectra(StRi chSpectra*);

121

5.60 StRichPixel 5 CLASS REFERENCES

5.60 StRichPixel

Summary The raw data information from the detector.

Synopsis #i ncl ude " St Ri chPi xel . h"
class StRichPi xel ;

Description This class contains the raw pixel information, which includes the pad, row, and
integerized ADC value of a single pixel.

Related Classes
Public St Ri chPi xel ();
Constructors Empty constructor.

St Ri chPi xel (unsi gned i nt packedDat a) ;

Specify the pixel utilizing the packed data where the first 8 bits are the pad number,
the second 8 bits are the row, and the next 11 bits are the ADC value (11th bit
indicates overflow).

Public Member i nt operator==(const StRichPixel & const;
Functions Equality operator based on the coded data.

i nt operator!=(const StRichPi xel & const;
Complement of the equality operator.

voi d set PackedDat a(unsi gned int);
Specify the coded data.

unsi gned short pad() const;
Returns the pad number.

unsi gned short row() const;
Returns the row number.

unsi gned short adc() const;
Returns the adc value.

unsi gned int reservedLong() const;
Reserved for future use.

voi d set ReservedLong(unsigned int);
Reserved for future use.

122

5 CLASS REFERENCES 5.61 StRichSoftwareMonitor

561 StRichSoftwareM onitor

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude " St Ri chSof t war elVbni tor. h"
cl ass St R chSof t war eMoni tor;

St Ri chSof t war eMbni tor () ;
St Ri chSof t war eMbni t or (const dst_non_soft _rich_st&);

voi d set Nunmber O Pi xel s(int);

voi d set Nunber O C usters(int);

void set NumberOFHits(int);

voi d set Tot al Charge(int);

i nt nunber O Pi xel s() const;

i nt nunmber O C usters() const;

int nunberOFHi ts() const;

int total Charge() const;

voi d set Number O Tr acksCr ossi ng(int);

voi d set Nunmber O Tr acksPi dCal cul at ed(i nt);
voi d set Number O Tr acksAbovelGev(int);
voi d set Nunber O Hi t sl nRi ngs(int);

voi d set Nunber O Ri ngs(int);

i nt nunber O Tr acksCr ossi ng() const;

i nt nunber O Tr acksPi dCal cul at ed() const;
i nt nunmber O Tr acksAbovelGev() const;

i nt nunber O Hi tsl nRings() const;

int nmult _rich_tot;

123

5.62 StRichSpectra 5 CLASS REFERENCES

5.62 StRichSpectra

Summary

Synopsis #i ncl ude "StRi chSpectra. h"
class StRichSpectra;

Description

Related Classes

Public St Ri chSpectra(int v=-999);

Constructors

Public Member St Ri chSpectra(float, float,float,float,float,float,
Functions float,float,int,float,int,int,

float,float,float,float,int,float,

float, float, float,

int, int, int,

i nt=-999);

voi d set Extrapol at edPosi tion(float, float);

voi d set Extrapol at edResi dual (fl oat, float);

voi d set Correct edExtrapol at edResi dual (fl oat, float);
voi d set Cher enkovAngl e(fl oat);

voi d set Cher enkovSi gma(fl oat);

voi d set Cher enkovPhot ons(int);

voi d set PeakAngl e(fl oat);

voi d set PeakPhot ons(int);

voi d set Tot al Phot ons(int);

voi d set MassSquared(fl oat);

voi d setLinelntegral Rati o(float);

voi d setLinelntegral (float);

voi d set Al pha(fl oat);

void setFlag(int);

voi d set Reserved(float);

voi d set MeanD(fl oat pi =FLT_MAX, float k=FLT_MAX, float p=FLT_NMAX);
voi d set Nunmber OF D(i nt pi=-100, int k=-100, int p=-100);
voi d setVersion(int);

fl oat get Extrapol atedX() const;

fl oat get Extrapol atedY() const;

fl oat get Extrapol at edXResi dual () const;

fl oat get Extrapol at edYResi dual () const;

fl oat get Correct edExtrapol at edXResi dual () const;
fl oat get Correct edExtrapol at edYResi dual () const;
fl oat get CherenkovAngl e() const;

fl oat get CherenkovSi gma() const;

i nt get CherenkovPhotons() const;

fl oat get PeakAngl e() const;

i nt get PeakPhot ons() const;

i nt get Tot al Phot ons() const;

fl oat get MassSquared() const;

float getLinelntegral Ratio() const;

float getLinelntegral () const;

124

5 CLASS REFERENCES 5.62 StRichSpectra

fl oat get Al pha() const;
int getFlag() const;

fl oat get MeanDpi () const;
fl oat get MeanDk() const;
fl oat get MeanDp() const;

i nt get MeanDnpi () const;

i nt get MeanDnk() const;

i nt get MeanDnp() const;

fl oat get Reserved() const;
i nt getVersion() const;

125

5.63 StRunlnfo

5 CLASS REFERENCES

5.63 StRunlnfo

Summary

Synopsis

Description

Public
Constructors

Public Member
Functions

126

Parameters related to current run.

#i ncl ude " St Runl nf o. h"
cl ass St Runl nf o;

This class contains parameters related to the current run. Much of the information
is redundant since some parameters can be obtained from the offline DB and other
classes. Hint: If you are not sure about the beam direction you can also use bl ue
and yel | owfor the blue and yellow ring respectively.

St Runl nfo();

int runld() const;
Run number.

tinme_t productionTine() const;

Time when production of this run/file started. Since the production is done on a
file-by-file basis and a run can be split in many files this time stamp is related to the
beginning of the production of the file. The format is UNIX time.

TString productionVersion() const;
Library version of the production chain.

doubl e cent er O MassEnergy() const;

i nt beanmMVassNumber (St BeanDi recti on) const;

fl oat beanEnergy(StBeanDirection) const;

float initial Beam ntensity(StBeanDirection) const;
Only at beginning of run.

fl oat beanlifeTi me(StBeanDirection) const;
fl oat beantil | Number (St BeanDi recti on) const;

doubl e nagneti cFi el d() const;
Z-component of magnetic field at (z, y, z) = (0,0, 0).

doubl e tpcDriftVel ocity(StBeanDirection) const;
TPC drift velocity as obtained from the DB.

doubl e zdcWest Rate() const;
ZDC West scaler rate (counts per second) interpolated by a straight line between
periodic online database entries.

doubl e zdcEast Rate() const;
ZDC East scaler rate (counts per second) interpolated by a straight line between
periodic online database entries.

doubl e zdcCoi nci denceRat e() const;
ZDC Coincidence scaler rate (counts per second) interpolated by a straight line
between periodic online database entries.

doubl e backgroundRat e() const;
Mult scaler rate (counts per second) interpolated by a straight line between periodic
online database entries.

doubl e | ORat eToRi ch() const;
LO rate sent to the RICH from trigger rate (counts per second) interpolated by a
straight line between periodic online database entries.

5 CLASS REFERENCES

5.63 StRunlnfo

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

set Runl d(int);

set ProductionTime(time_t);

set Product i onVer si on(const char*);

set Cent er O MassEner gy(doubl e) ;

set BeanvassNunber (St BeanDi recti on, int);

set BeanEner gy(St BeanDirection, float);
setlnitial Beam ntensity(StBeanDirection, float);
set Beanli f eTi me(St BeanDi recti on, float);

set Beanti | | Nunber (St BeanDi recti on, float);
set Magnet i cFi el d(doubl e) ;

set TpcDri ft Vel ocity(StBeanDirection, double);
set ZdcWest Rat e(doubl e) ;

set ZdcEast Rat e(doubl e) ;

set ZdcCoi nci denceRat e(doubl e) ;

set Backgr oundRat e(doubl e) ;

set LORat eToRi ch(doubl e);

127

5.64 StSoftwareMonitor 5 CLASS REFERENCES

5.64 StSoftwareMonitor

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

128

#i ncl ude " St Sof t war eMoni t or. h"
cl ass St Sof t war eMoni tor;

St Sof t war eMoni t or () ;

St Sof t war eMoni t or (const dst_non_soft _tpc_st*,
const dst_non_soft svt_st*,
const dst_non_soft _ftpc_st*,
const dst_non_soft_ent_st*,
const dst_non_soft cth _st*,
const dst_non_soft _rich_st*,
const dst_non_soft gl ob_st*,
const dst_non_soft |3 st*);

St Sof t war eMoni t or & oper at or =(const St Sof t war eMbni t or &) ;

St Sof t war eMoni t or (const St Sof t war eMoni t or &) ;

St TpcSof t war eMoni tor* tpc();

const St TpcSoftwarehMonitor* tpc() const;
St Svt Sof t war eMoni tor* svt();

const St Svt SoftwareMonitor* svt() const;
St Ft pcSof t war eMonitor* ftpc();

const St FtpcSoftwareMnitor* ftpc() const;
St Enc Sof t war eMoni tor* enc();

const St EntSoftwareMonitor* entc() const;
St Ri chSof t wareMonitor* rich();

const StRi chSoftwareMnitor* rich() const;
St Ct bSof t war eMoni tor* ctb();

const St CtbSoftwarehMonitor* ctb() const;
St @ obal Sof t war eMoni tor* gl obal () ;

const St d obal Soft wareMonitor* gl obal () const;
St L3Sof t wareMbnitor* | 3();

const StL3SoftwareMonitor* | 3() const;

St Tof Sof t war eMoni tor* tof ();

const St Tof SoftwarehMonitor* tof() const;

voi d set TpcSof t war eMbni t or (St TpcSof t war eMoni t or *) ;

voi d set Svt Sof t war eMbni t or (St Svt Sof t war eMbni t or *) ;

voi d set Ft pcSof t war eMoni t or (St Ft pc Sof t war eMoni t or *) ;

voi d set EntSof t war eMbni t or (St Ent Sof t war eMbni t or *) ;

voi d set Ri chSof t war eMoni t or (St Ri chSof t war eMoni t or*) ;

voi d set Ct bSof t war eMbni t or (St Ct bSof t war eMoni t or *) ;

voi d set d obal Sof t war eMbni t or (St A obal Sof t war eMbni t or *) ;
voi d set L3Sof t war eMoni t or (St L3Sof t war eMoni t or *) ;

voi d set Tof Sof t war eMbni t or (St Tof Sof t war eMbni t or *) ;

5 CLASS REFERENCES 5.65 StSsdHit

565 StSsdHit

Summary

Synopsis #i ncl ude "StSsdHit. h"
class StSsdHit;

Description

Related Classes

Public St SsdHit ();

Constructors St SsdHi t (const St Thr eeVect or F&,
const St ThreeVect or F&,
unsi gned int, float, unsigned char = 0);
St SsdHi t (const dst_point_st&);

Public Member unsi gned int | adder() const;
Functions Returns ladder number in the range 1-20.

unsi gned int wafer() const;
Returns wafer number in the range 1-16.

unsi gned int central Stri pNSi de() const;
unsigned int central Stri pPSi de() const;
unsi gned int clusterSizeNSi de() const;
unsi gned int clusterSizePSi de() const;

129

5.66 StSsdHitCollection 5 CLASS REFERENCES

5.66 StSsdHitCollection

Summary

Synopsis #i ncl ude "St SsdHi t Col | ecti on. h"
cl ass St SsdHit Col | ecti on;

Description

Related Classes

Public St SsdHi t Col | ecti on();

Constructors

Public Member bool addHit (StSsdHit*);

Functions unsi gned int numberOFH ts() const;

unsi gned int nunmber O Ladders() const;
St SsdLadder Hi t Col | ecti on* | adder (unsi gned int);
const St SsdLadderHit Col | ecti on* | adder (unsi gned int) const;

130

5 CLASS REFERENCES

5.67 StSsdLadderHitCollection

5.67 StSsdLadderHitCollection

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude " St SsdLadder Hi t Col | ecti on. h"
cl ass St SsdLadder Hi t Col | ecti on;

St SsdLadder Hi t Col | ecti on();

unsi gned int numberOfH ts() const;

unsi gned int nunber O Wafers() const;

St SsdWaf er Hi t Col | ecti on* waf er(unsigned int);
const St SsdWaferHit Coll ecti on* wafer (unsi gned

int) const;

131

5.68 StSsdWaferHitCollection 5 CLASS REFERENCES

5.68 StSsdWaferHitCollection

Summary

Synopsis #i ncl ude " St SsdWafer Hi t Col | ecti on. h"
cl ass St SsdWaferHit Coll ecti on;

Description

Related Classes

Public St SsdWaf er Hi t Col | ection();
Constructors

Public Member St SPtrVecSsdHi t & hits();

Functions const StSPtrVecSsdHit& hits() const;

132

5 CLASS REFERENCES

5.69 StSvtBarrelHitCollection

5.69 StSviBarrelHitCollection

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#include "StSvtBarrel Hi t Col | ection. h"
class StSvtBarrel HitColl ection;

St SvtBarrel Hit Col |l ection();

unsi gned int numberOfH ts() const;

unsi gned i nt nunmber O Ladders() const;

St Svt Ladder Hi t Col | ecti on* | adder (unsi gned int);
const St SvtlLadderHitCollection* | adder (unsigned

int) const;

133

5.70 StSvtHit 5 CLASS REFERENCES

570 StSvtHit

Summary

Synopsis #include "StSvtH t. h"
class StSvtHit;

Description

Related Classes

Public StSvtHit();
Constructors St Svt Hit (const St ThreeVect or F&,
const St Thr eeVect or F&,
unsi gned int, float, unsigned char = 0);
St Svt Hit (const dst_point_st&);

Public Member unsigned int |ayer() const;
Functions Layer in which hit is located. Layer number runs from 1-6.

unsi gned int | adder() const;
Ladder number runs from 1-16. Ladders are counted per barrel.

unsi gned int wafer() const;
Wafer number runs from 1-7.

unsi gned int barrel () const;
Barrel number runs from 1-3.

unsi gned int hybrid() const;

134

5 CLASS REFERENCES

5.71 StSvtHitCollection

571 StSvtHitCollection

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#include "StSvtHi t Col | ection. h"
class StSvtHitCollection;

StSvtHit Col l ection();

bool addHit(StSvtHit*);
unsi gned int numberOfH ts() const;
unsi gned int nunmberO Barrel s() const;

St SvtBarrel Hit Col |l ecti on* barrel (unsigned int);
const StSvtBarrel HitCollection* barrel (unsigned

int) const;

135

5.72 StSvtLadderHitCollection 5 CLASS REFERENCES

572 StSvtLadderHitCollection

Summary

Synopsis #i ncl ude " St Svt Ladder Hi t Col | ecti on. h"
cl ass St SvtLadderHitCol |l ection;

Description

Related Classes

Public St Svt Ladder Hi t Col | ection();
Constructors

Public Member unsi gned int numberOfH ts() const;
Functions unsi gned int nunber O Wafers() const;

St Svt Waf er Hi t Col | ecti on* wafer(unsigned int);
const St SvtWaferHitCollection* wafer(unsigned int) const;

136

5 CLASS REFERENCES 5.73 StSvtSoftwareMonitor

5.73 StSvtSoftwareM onitor

Summary

Synopsis
Description
Related Classes
Public

Constructors

Public Data
Member

#i ncl ude " St Svt Sof t war eMoni t or. h"
cl ass St Svt Sof t war eMoni t or;

Some of the data member in this class are arrays of size 4. The first 3 elements
refer to the 3 SVT barrels, the 41" element refers to the SSD.

St Svt Sof t war eMoni tor () ;
St Svt Sof t war eMoni t or (const dst_non_soft _svt_st&);

int n_clus_svt[4];
Total number clusters in each SVT/SSD barrel/layer.

int n_pts_svt[4];
Total number of space points in each SVT/SSD barrel/layer.

int n_trk _svt;
Total number of tracks in SVT.

float chrg _svt _tot[4];
Total charge deposition in each SVT/SSD barrel/layer.

float hit _frac_svt[4];
Fraction of hits used in each SVT/SSD barrel/layer.

float avg_trkL_svt;
Average track length (cm) SVT
or average number of points assigned.

float res_pad_svt;
Average residual, pad direction, SVT
or average chisq(1) of fit.

float res_drf_svt;
Average residuals, drift direction, SVT
or average chisq(2) of fit.

137

5.74 StSvtWaferHitCollection 5 CLASS REFERENCES

574 StSviWafer HitCollection

Summary

Synopsis #i ncl ude "StSvtWaferH t Col |l ection. h"
cl ass St SvtWaferHitCollection;

Description

Related Classes

Public St Svt Wafer Hi t Col | ection();
Constructors

Public Member StSPtrVecSvtH t& hits();

Functions const StSPtrVecSvtHi t& hits() const;

138

5 CLASS REFERENCES

5.75 StTofCell

575 StTofCell

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i nc
cl as

St To
St To

i nt
i nt
i nt
i nt
i nt
i nt
i nt
St Tr
cons
voi d
voi d
voi d
voi d
voi d
voi d

| ude "StTofCel | . h"

s St Tof Cel | ;

fCell ();

fCell(int, int, int, int, int, StTrack*);

operat or==(const StTofCell & const;
operator!=(const StTofCell & const;
trayl ndex() const;

nmodul el ndex() const;

cel l I ndex() const;

adc() const;

tdc() const;

ack* associ at edTrack();

t StTrack* associ atedTrack() const;
set Trayl ndex(int);

set Mbdul el ndex(int);

set Cel | I ndex(int);

set Adc(int);

set Tdc(int);

set Associ at edTrack(St Track*);

139

5.76 StTofCollection 5 CLASS REFERENCES

576 StTofCollection

Summary

Synopsis #i ncl ude " St Tof Col | ecti on. h"
cl ass St Tof Col | ecti on;

Description

Related Classes

Public St Tof Col | ection();

Constructors

Public Member const StSPtrVecTof Cell & tof Cel Il s() const;
Functions St SPtrVecTof Cel | & tof Cel | s();

const StSPtrVecTof Sl at& tof Sl ats() const;
St SPtr VecTof Sl at & tof Sl at s();

const StSPtrVecTof Ht& tof H ts() const;
StSPtrVecTofHt& tof Hits();

const St SPtrVecTof Dat a& t of Data() const;
St SPt r VecTof Dat a& t of Dat a() ;

voi d addSl at (const St Tof Sl at*);

voi d addCel | (const StTof Cell*);

void addHit (const StTofHit*);

voi d addDat a(const St Tof Dat a*);

bool cellsPresent() const;

bool sl atsPresent() const;

bool hitsPresent() const;

bool dataPresent() const;

140

5 CLASS REFERENCES 5.77 StTofData

577 StTofData

Summary

Synopsis #i ncl ude " St Tof Dat a. h"
cl ass St Tof Dat a;

Description

Related Classes

Public St Tof Dat a() ;

Constructors St Tof Dat a(unsi gned short, unsigned short, unsigned short, short, uns
Public Member i nt operator==(const StTofData&) const;

Functions i nt operator!=(const StTofData&) const;

unsi gned short datal ndex() const;
unsi gned short adc() const;

unsi gned short tdc() const;

short tc() const;

unsi gned short sc() const;

voi d set Dat al ndex(unsi gned short);
voi d set Adc(unsi gned short);

voi d set Tdc(unsi gned short);

void set Tc(short);

voi d set Sc(unsi gned short);

141

5.78 StTofHit 5 CLASS REFERENCES

578 StTofHit

Summary

Synopsis #include "StTof Hi t. h"
class StTofHit;

Description

Related Classes

Public StTof Hit ();

Constructors

Public Member int traylndex() const;
Functions i nt nodul el ndex() const;

int celllndex() const;

i nt daqgl ndex() const;

float timeOf Flight() const;

fl oat pathLength() const;

float beta() const;

St Track* associ at edTrack();

const St Track* associ atedTrack() const;
fl oat tof ExpectedAsEl ectron() const;

fl oat tof ExpectedAsPi on() const;

fl oat tof Expect edAsKaon() const;

fl oat tof ExpectedAsProton() const;
float signaEl ectron() const;

float sigmaPion() const;

fl oat signaKaon() const;

float sigmaProton() const;
StParticleDefinition* particleHypothesis();
const StParticleDefinition* particleHypothesis() const;
voi d set Trayl ndex(int);

voi d set Modul el ndex(int);

void setCell I ndex(int);

voi d set Daqgl ndex(int);

void setTi mreOf Flight(float);

voi d set Pat hLengt h(fl oat);

void setBeta(float);

voi d set Associ at edTrack(St Track*) ;

voi d settof Expect edAsEl ectron(fl oat);
voi d sett of Expect edAsPi on(fl oat);

voi d sett of Expect edAsKaon(fl oat);

voi d sett of Expect edAsProton(fl oat);
voi d setsignmaEl ectron(float);

voi d setsigmaPi on(fl oat);

voi d setsi gmaKaon(fl oat);

voi d setsigmaProton(float);

voi d setparticl eHypothesi s(StParticleDefinition*);

142

5 CLASS REFERENCES

5.79 StTofMCCell

579 StTofMCCdl

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude " St Tof MCCel | . h"
cl ass St Tof MCCel | ;

St Tof MCCel | () ;
St Tof MCCel | (const St Tof MCI nf 0&) ;

i nt operator==(const St Tof MCCell & const;
i nt operator!=(const StTof MCCell & const;
const St Tof MCl nf 0& ntl nfo() const;

voi d set MCl nf o(const St Tof MCI nf 0&) ;

void setNH ts(int nHits);

voi d set NPhe(int nPhe);

voi d setDe(fl oat de);

voi d setDs(fl oat ds);

void set Tof (fl oat tof);

143

5.80 StTofMCHit 5 CLASS REFERENCES

580 StTofMCHit

Summary

Synopsis #i nclude "StTof MCHi t. h"
class St Tof MCHi t;

Description

Related Classes

Public St Tof MCHi t () ;
Constructors

Public Member int trkld() const;
Functions int gld() const;

void setTrkld(Int_t);
void setdd(Int_t);

144

5 CLASS REFERENCES

5.81 StTofMClInfo

581 StTofMClnfo

Summary

Synopsis

Description
Related Classes

Public
Constructors

#i ncl ude " St Tof MCl nf 0. h"
cl ass St Tof MCI nf o;

St Tof MCI nf o() ;

St Tof MCInfo(int, int, int, float, int, float,
float, float, float, float, float, float,
float);

i nt operator==(const St Tof MCl nfo& MClI nfo) const;
i nt operator!=(const StTof MCl nfo& MCl nfo) const;

Int_t nilrkld;

Int t mdd;

Int_ t m\Hits;

I nt _t mNPhe;

Fl oat _t nDe;

Fl oat _t nPTot;

Fl oat _t nDs;

Fl oat _t nBSLengt h;
Fl oat _t nPniengt h;
Fl oat t nilof;

Fl oat _t nili nme;

Fl oat _t nMIi ne;

Fl oat _t nMTi nmeL;

145

5.82 StTofMCSlat 5 CLASS REFERENCES

582 StTofMCSlat

Summary

Synopsis #i ncl ude " St Tof MCSI at . h"
cl ass St Tof MCSI at ;

Description

Related Classes

Public St Tof MCSI at () ;

Constructors St Tof MCSI at (const St Tof MCI nf 0&) ;

Public Member i nt operator==(const StTof MCSl at & const;
Functions i nt operator!=(const StTof MCSlI at&) const;

const St Tof MCl nf 0& ntl nfo() const;
voi d set MCl nf o(const St Tof MCl nf 0&) ;
void setNH ts(int nHits);

voi d set NPhe(int nPhe);

voi d setDe(fl oat de);

voi d setDs(fl oat ds);

void set Tof (fl oat tof);

146

5 CLASS REFERENCES 5.83 StTofPidTraits

5.83 StTofPidTraits

Summary

Synopsis #i nclude "St Tof PidTraits. h"
class StTof PidTraits;

Description

Related Classes

Public St Tof Pi dTrai ts();
Constructors

Public Member
Functions

147

5.84 StTofSlat

5 CLASS REFERENCES

584 StTofSat

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

148

#i ncl ude " St Tof Sl at. h"
class St Tof Sl at ;

St Tof Sl at () ;
St Tof Sl at (unsi gned short, unsigned short, unsigned short,

i nt operator==(const StTofSlat&) const;
i nt operator!=(const StTofSlat&) const;
unsi gned short sl atlndex() const;

unsi gned short adc() const;

unsi gned short tdc() const;

St Track* associ at edTrack();

const St Track* associ atedTrack() const;
voi d set Sl at | ndex(unsi gned short);

voi d set Adc(unsi gned short);

voi d set Tdc(unsi gned short);

voi d set Associ at edTrack(St Track*) ;

St Track*);

5 CLASS REFERENCES 5.85

StTofSoftwareMonitor

5.85 StTofSoftwareM onitor

Summary

Synopsis #i ncl ude " St Tof Sof t war eMoni t or. h"
cl ass St Tof Sof t war eMoni t or;

Description

Related Classes

Public St Tof Sof t war eMoni t or () ;
Constructors

Public Member
Functions

149

5.86 StTpcDedxPidAlgorithm 5 CLASS REFERENCES

586 StTpcDedxPidAlgorithm

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

150

Functor which allows to obtain PID information derived from the dE/dx of the track
in the TPC.

#i ncl ude " St TpcDedxPi dAl gorithm h"
cl ass St TpcDedxPi dAl gorithm

Thisisanexample ofan St Pi dAl gor i t hm Please handle itas such. The functor
selects the first St Tr ackPi dTr ai t s it encounters that (i) is derived from the
TPC and (ii) uses the method passed as an argument to the constructor. The various
methods added to this class were implemented by Craig Ogilvie (MIT). For a more
general overview see 3.4.6 and 3.4.7.

St TpcDedxPi dAl gor i t hminherits directly from St Pi dAl gori t hm

St TpcDedxPi dAl gori t hn(St DedxMet hod = kTruncat edMeanl d) ;

Creates instances of St TpcDedxPi dAl gori t hm The argument is the dE/dx

method of your choice. The defaultisk Tr uncat edMeanl d, i.e.thekTr uncat edMeanl d
method is selected in case you do not provide an argument. See 2.2 for possible

methods. Note that the existence of an enumeration doesn’t mean that it is available

or even implemented.

StParticleDefinition* operator() (const StTrack& const StSPtrVecTrackPid
const St DedxPidTraits* traits() const;

doubl e nunber O Si gma(const St ParticleDefinition*) const;

doubl e neanPi dFunction(const StParticleDefinition*) const;

doubl e si gmaPi dFunction(const StParticleDefinition*) const;

5 CLASS REFERENCES 5.87 StTpcHit

5.87 StTpcHit

Summary

Synopsis #i nclude "StTpcHit. h"
class StTpcHit;

Description

Related Classes
Public St TpcHit ();
Constructors Default constructor.

St TpcHi t (const St Thr eeVect or F&,
const St ThreeVect or F&,
unsi gned int, float, unsigned char = 0);

St TpcHi t (const dst_point_st&);

Public Member unsi gned int sector() const;
Functions Returns sector number in the range 1-24.

unsi gned int padrow() const;
Returns padrow number in the range 1-45.
unsi gned int padslnH t() const;

unsi gned int pixelslnH t() const;

151

5.88 StTpcHitCollection 5 CLASS REFERENCES

5.88 StTpcHitCollection

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

152

#i ncl ude "St TpcHi t Col | ecti on. h"
class St TpcHit Col | ecti on;

St TpcHi t Col | ecti on();

bool addHit (St TpcHit*);

unsi gned int numberOfH ts() const;
Total number of TPC hits in the collection.

unsi gned int nunmber O Sectors() const;

St TpcSect or Hit Col | ecti on* sector(unsigned int i);
const St TpcSectorHitCollection* sector(unsigned int i) const;
Index i runs from 0—(n-1) where n = nunmber Of Sect or s() .

5 CLASS REFERENCES 5.89 StTpcPadrowHitCollection

589 StTpcPadrowHitCollection

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

Holds all hits stored in a padrow.

#i ncl ude " St TpcPadr owHi t Col | ecti on. h"
cl ass St TpcPadrowHi t Col | ecti on;

St TpcPadr owHi t Col | ecti on();

St SPtrVecTpcH t & hits();
const StSPtrVecTpcHit& hits() const;

153

5.90 StTpcPixel 5 CLASS REFERENCES

590 StTpcPixe

Summary

Synopsis #i ncl ude " St TpcPi xel . h"
cl ass St TpcPi xel ;

Description

Related Classes

Public St TpcPi xel () ;
Constructors St TpcPi xel (unsi gned short, unsigned int);
St TpcPi xel (const dst_pi xel _st&);

Public Member unsi gned short detector() const;
Functions

unsi gned short sector() const;
Returns sector in the range 1-24.

unsi gned short padrow() const;
Returns padrow in the range 1-45.

unsi gned int pad() const;
unsigned int tinebin() const;
unsi gned int adc() const;

Public Member i nt operator==(const St TpcPi xel & const;
Operator i nt operator!=(const StTpcPixel & const;

154

5 CLASS REFERENCES 5.91 StTpcSectorHitCollection

591 StTpcSectorHitCollection

Summary

Synopsis #i ncl ude " St TpcSectorHitCol | ection. h"
class St TpcSectorHitColl ection;

Description

Related Classes

Public St TpcSectorHit Col | ection();
Constructors

Public Member unsi gned int numberOfH ts() const;
Functions Total number of hits in the sector.

unsi gned i nt number O Padrows() const;
Always 45.

St TpcPadr owHi t Col | ecti on* padrow unsigned int i);
const St TpcPadrowHi t Col | ecti on* padrow(unsi gned int) const;
Returns padrow hit collection. Note that i =0-44.

155

5.92 StTpcSoftwareMonitor 5 CLASS REFERENCES

592 StTpcSoftwareM onitor

Summary

Synopsis #i ncl ude " St TpcSof t war eMoni t or. h"
cl ass St TpcSof t war eMbni t or;

Description

Related Classes

Public St TpcSof t war eMoni t or () ;

Constructors St TpcSof t war eMoni t or (const dst_non_soft_tpc_st&);
Public Data int n_clus_tpc_tot;

Member Total number of clusters in TPC.

int n_clus_tpc_in[24];

Total number of clusters in inner TPC sectors.

int n_clus_tpc_out[24];

Total number of clusters in outer TPC sectors.

int n_pts tpc_tot;

Total number of space points in TPC.

int n_pts_tpc_in[24];

Total number of space points in inner TPC sectors.
int n_pts_tpc_out[24];

Total number of space points in outer TPC sectors.
int n_trk tpc[2];

Total number of tracks in TPC, tan(dip angle) < 0 (> 0).
float chrg tpc_drift[10];

Charge deposited in TPC in along z.

float chrg tpc_tot;

Total charge deposition in TPC.

float chrg tpc_in[24];

Total charge deposition in inner TPC sectors.

float chrg tpc_out[?24];

Total charge deposition in outer TPC sectors.

float hit_frac_tpc[2];

Fraction of hits used in TPC, tan(dip angle) < 0 (> 0).
float avg trkL_tpc[2];

Average track length (cm)

or average number of assigned, tan(dip angle) < 0 (> 0).
float res_drf _tpc[2];

Average residuals, drift direction,

or average chisq(2) of fit, tan(dip angle) < 0 (> 0).

156

5 CLASS REFERENCES 593 StTptTrack

593 StTptTrack

Summary

Synopsis TPC tracks as generated by the “tpt” tracker. #i ncl ude " St Tpt Tr ack. h"
cl ass St Tpt Tr ack;

Description St Tpt Tr ack is created using the original tracks generated in the t pt tracker.
This is a pure TPC track. Use for debugging purposes only.

Related Classes St Tpt Tr ack is derived from St Tr ack. See there for more info.

Public St Tpt Track() ;

Constructors St Tpt Track(const dst_track st&);
St Tpt Track(const St Tpt Track&) ;
St Tpt Track& oper at or=(const St Tpt Track&) ;

Public Member St Tpt Track type() const;

Functions Returns always t pt .

const StVertex* vertex() const;
Returns always nul | .

157

594 StTrack 5 CLASS REFERENCES

594 StTrack

Summary

Synopsis #i ncl ude " St Track. h"
cl ass St Track;

Description

Related Classes

Public St Track() ;
Constructors St Track(const dst_track st&);
St Track(const St Track&);
St Track& operat or=(const StTrack&);

Public Member St TrackType type() const = O;
Functions Track type as defined in enumeration St Tr ack Ty pe. See section 2.2.

const StVertex* vertex() const = 0;
Pointer to parent vertex. Pure virtual function. To be implemented in concrete
classes inheriting from St Tr ack.

unsi gned short key() const;
Returns foreign key as defined in the dst_track table. The key can be used as track
ID. All tracks in the same track node should carry the same ID.

short flag() const;
Track quality control flag. The most important point is: fI ag() > 0 is good,
flag() < Ois bad. The meaning of the negative return code depends on the
actual implementation of the algorithms and will therefore vary in time. The best
sources for more details are currently (June 2000):

o http://www.star.bnl.gov/STAR/html/all_I/html/dst_track_flags.html

o http://www.star.bnl.gov/STARAFS/comp/reco/kalerr.html

unsi gned short encodedMet hod() const;
bool finderSchene(St TrackFi nder Schene) const;
St TrackFitti ngMet hod fitti ngMet hod() const;

float inpactParaneter() const;
Returns the impact parameter, or better the distance-of-closest aproach, of the track
to the primary vertex.

float length() const;

unsi gned short nunber O Possi bl ePoi nts() const;
Returns number of the (theoretically) maximum number of points along a track in
TPC, SVT, and SSD. Does not include Tof, RICH, or EMC.

unsi gned short nunber O Possi bl ePoi nt s(St Detectorld det) const;
Returns number of the (theoretically) maximum number of points along a track in
a given detector det . Applies only for tracking detectors: TPC, SVT, and SSD.

158

5 CLASS REFERENCES 5.94 StTrack

const St TrackTopol ogyMap& topol ogyMap() const;

St TrackGeonet ry* geonetry();

const St TrackGeonetry* geonetry() const;

Returns pointer to track geometry, i.e. the track parameters as curvature, dip angles,
momentum and more. Note that these are the parameters at the origin of the track.
This can either be the first point, or better the point on the helix which is closest
to the first point (global tracks), or the primary vertex (primary tracks). See also
out er Geonetry().

St TrackGeonet ry* out er Geonetry();

const St TrackGeomnetry* outerCGeonetry() const;

Same as above but for the last (outer-most) point on the track. For high-p tracks
the parameters from geonet r y() and out er Geonet r y() will be almost iden-
tical in terms of momentum and pointing but at lower p they might differ consid-
erably. Use the ones from the outer most point if you use the parameters to ex-
trapolate to detectors at large radii (RICH, EMC, ToF, etc.). This was added after
the Kalman fitter was implemented which incorporates effects like energy-loss and
multiple scattering.

St TrackDet ect or I nf o* detectorlnfo();

const St TrackDet ectorl nfo* detectorlnfo() const;
const StTrackFitTraits& fitTraits() const;

const St SPtrVecTrackPi dTraits& pidTraits() const;

St SPt r VecTr ackPi dTrai ts& pidTraits();

St PtrVecTrackPi dTraits pidTraits(StDetectorld) const;
const StParticleDefinition* pidTraits(StPidAl gorithm&) const;
St Tr ackNode* node();

const St TrackNode* node() const;

voi d setFl ag(short);

voi d set EncodedMet hod(unsi gned short);

voi d set | npact Paraneter (float);

voi d setlLength(float);

voi d set Topol ogyMap(const St TrackTopol ogyMap&) ;

voi d set Geonetry(St TrackGeonetry*);

voi d set Quter Geonetry(St TrackGeonetry*);

void setFitTraits(const StTrackFitTraits&);

voi d addPi dTraits(St TrackPi dTraits*);

voi d setDetectorlnfo(StTrackDetectorlnfo*);

voi d set Node(St TrackNode*) ;

159

5.95 StTrackDetectorInfo 5 CLASS REFERENCES

5.95 StTrackDetector|nfo

Summary Information on hits/points associated with a track.

Synopsis #i ncl ude " St TrackDet ect or |l nfo. h"
cl ass St TrackDet ect or | nf o;

Description This class holds all information related to hits used to reconstruct a given track.
The main component is a list of pointers to those hits which are associated with the
track. Several tracks can in principle share the same instance of St Tr ackDet ect or | nf o.
Note, that in case there are no hits stored on a DST, this class won’t provide a lot
of info. The only methods still valid are:

firstPoint()

| ast Poi nt ()

e number O Poi nt s()

e number O Poi nt s(St Det ect or | d)

In this case the topology map (see 5.100) is the only source left to get more detailed

info on hits.
Related Classes
Public St TrackDet ector I nfo();
Constructors St TrackDet ect or I nfo(const dst_track_st&);
Public Member const St ThreeVectorF& firstPoint() const;
Functions First point on the track.

const St ThreeVectorF& | astPoint() const;
Last point on the track.

unsi gned short nunber O Poi nt s() const;

Returns the number of points assigned to the the track during reconstruction (all
detectors). This number might or might not reflect the number of hits actually refer-
enced by this class, i.e. it is not affected by callsto addHi t () orr emoveHi t ().
Even if hits are not loaded, and thus no references to hits exist, this method will
return the proper values. If you want to know the number of hits actually refer-
enced use nunber O Ref er encedPoi nt s() (see below). This method takes
only the following hits into account: TPC, SVT, and SSD. Becomes obsolete
when the DST tables are gone. The preferred way of getting this info is via the
St TrackTopol ogyMap (see 5.100) available from class St Tr ack (see 5.94).

unsi gned short nunber O Poi nt s(St Detectorld det) const;
Returns the number of points in a given detector det . This is the number of
hits from detector det assigned to this track at reconstruction time. This num-
ber might or might not reflect the number of hits actually referenced by this class,
i.e. it is not affected by calls to addHi t () or renpveHit (). Even if hits
are not loaded, and thus no references to hits exist, this method will return the
proper values. If you want to know the number of hits actually referenced use
nunber O Ref er encedPoi nt s() (see below).

Because of the packing scheme of the variable used to store this information there’s
no way to distinguish between FTPC and TPC hits. That means that

160

5 CLASS REFERENCES 5.95 StTrackDetectorInfo

nunber O Poi nt s(kTpcl d) == nunber O Poi nt s(kFt pcWest | d)
== nunber O Poi nt s(kFt pcEast | d)

If you are not sure you better check using the St Tr ackTopol ogyMap (see
5.100) available from class St Tr ack (see 5.94). This method does not apply for
detectors other than: TPC, SVT, and SSD. Becomes obsolete when the DST tables
are gone.

unsi gned short nunber O Ref er encedPoi nt s() const;

Returns the total number of points (hits) referenced. This is not necessarily the
number of points assigned to the track during reconstruction. If the refrring hits are
not loaded (e.g. on DST) this method will return 0. To find out about the number of
hits used from the reconstruction chain use nunber Of Poi nt s() . This method
will count all sort of hits including those from EMC, RICH, and ToF.

unsi gned short numnber O Ref er encedPoi nt s(St Det ectorl d det) const;
Returns the number of points (hits) referenced originating from detector det . This

does not necessarily reflect the number of points assigned during reconstruction.

If no hits are loaded for a given detector (e.g. on DST) this function will return

0. To find out about the number of hits as defined in reconstruction chain use

nunber O Poi nt s(). This method works for all sorts of hits including those

from EMC, RICH, and ToF.

StPtrVecH t hits(StDetectorld) const;
StPtrVecHit hits(StHitFilter& const;
StPtrVecHit& hits();

const StPtrVecH t& hits() const;

voi d set FirstPoint (const StThreeVectorF&);
voi d set Last Poi nt (const St ThreeVect or F&) ;
voi d set Nunber O Poi nt s(unsi gned short);
void addHit (StHi t*);

void removeH t (StHit* &) ;

161

5.96 StTrackFitTraits 5 CLASS REFERENCES

596 StTrackFitTraits

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

162

#include "StTrackFitTraits. h"
class StTrackFitTraits;

St TrackFitTraits();

St TrackFi t Trai t s(unsi gned short, unsigned short, float[2],

St TrackFit Trai ts(const dst_track_st&);

unsi gned short nunber O Fi t Poi nts() const;
Total number of points used for the fit, i.e. summing the hits in all detectors the
track crossed.

unsi gned short nunber O FitPoints(StDetectorld id) const;
Number of points in detector i d used for the fit.

StParticl eDefinition* pidHypot hesis() const;
PID hypothesis used for the fit. This variable is only useful if the fitting algorithms
takes energy loss and multiple scattering into account.

St Matri xF covariant Matrix() const;

doubl e chi 2(unsigned int i = 0) const;

Depending on the fitting method and the type of track there is either one or two
values. If a real 3D fit is performed (e.g. Kalman) the first value (i = 0) is the x2
per degree of freedom and the second value (i = 1) is the upper tail probability
of %2 distribution for this value. If two 2-dimensional fits are performed (circle in
Xy plane and straight line in path-z) the x? per degree of freedom for each fit is
stored.

float[15]);

5 CLASS REFERENCES

5.97 StTrackGeometry

597 StTrackGeometry

Summary

Synopsis
Description
Related Classes
Public

Constructors

Public Member
Functions

Abstract base class. All descriptions of track geometry inherit from this class.

#i ncl ude "St TrackGeonetry. h"
cl ass St TrackGeonetry;

The concrete implementations of this class (e.g. St Hel i xMbdel) are used to
describe the geometry of a track, i.e., it’s direction, shape, origin, and momentum.

Class St Hel i xMbdel inherits from St Tr ackGeonet ry.

St TrackGeonet ry();
St TrackGeonetry(const dst_track st&);

St TrackMbdel nodel () const = O;
short charge() const = O;

doubl e curvature() const = O;
doubl e psi () const = 0;

doubl e di pAngl e() const = O;

const St ThreeVectorF& origin() const =

const St ThreeVect or F& nonent un{) const
St Physi cal Hel i xD hel i x() const = 0;

= 0;

163

5.98 StTrackNode 5 CLASS REFERENCES

598 StTrackNode

Summary

Synopsis #i ncl ude " St TrackNode. h"
cl ass St TrackNode;

Description

Related Classes

Public St TrackNode() ;

Constructors

Public Member voi d addTrack(St Track*);
Functions voi d renmoveTrack(St Track*);

unsigned int entries() const;

St Track* track(unsigned int);

const St Track* track(unsigned int) const;

unsigned int entries(StTrackType) const;

St Track* track(StTrackType, unsigned int = 0);

const StTrack* track(StTrackType, unsigned int = Q) const;

164

5 CLASS REFERENCES 5.99 StTrackPidTraits

599 StTrackPidTraits

Summary

Synopsis

Description

Related Classes

Public
Constructors

Public Member
Functions

Abstract interface to all track related PID information.

#i nclude "St TrackPi dTraits. h"
class St TrackPi dTraits;

This class is the abstract interface to all track related PID information. Since the
implementations of the various concrete PID classes differ strongly this class is
incomplete and thus a dynam c_cast is required each time when concrete im-
plementations are accessed through this interface (e.g. in St Tr ack).

All PID classes (e.g. St DedxPi dTr ai t s) inherit from this class.

St TrackPi dTrai ts();
St TrackPi dTrai t s(St Detectorld);
St TrackPi dTrai t s(const dst_dedx_st &);

short detector() const;
Returns the detector from which the PID is derived.

165

5.100 StTrackTopologyMap 5 CLASS REFERENCES

5.100 StTrackTopologyM ap

Summary Provides details on the topology of hits along a track trajectory.

Synopsis #i ncl ude " St TrackTopol ogyMap. h"
cl ass St TrackTopol ogyMap;

Description Represents packed 64-bits used to indicate either the continuity or gaps in tracks
as they cross different active elements of the SVT, SSD, TPC and FTPC. Also
indicates if track extrapolates to other detectors (MWC, CTB, TOF, RICH, EMC
barrel, EMC end cap) and if a vertex constraint was used or not. In case no hits are
available on the DST this is the only piece of information available on the topology
of the hits belonging to a track.

The class provides methods that allow to access information without detailed knowl-
edge on how the bits are packed.

Related Classes

Public St Tr ackTopol ogyMap() ;
Constructors St TrackTopol ogyMap(unsi gned i nt, unsigned int);
St TrackTopol ogyMap(const unsigned int*);

Public Member bool primaryVertexUsed() const;

Functions Indicates wether the primary vertex was used or not. Also used to indicate that
a secondary vertex constraint was used for special track fitting methods for decay
vertices (see method variable).

unsi gned int numberOHi ts(StDetectorld id) const;
Returns the number of hits assigned to the track in detectori d.

bool hasHi t1 nRow(St Detectorld det, unsigned int row) const;
Row numbering starts at 1 following STAR conventions.

bool hasHi t1nSvtLayer(unsigned int |ayer) const;
Layer numbering starts at 1 following STAR conventions.

bool turnAroundFl ag() const;
Indicates if a track spirals in which case the information stored is incomplete.

unsi gned int data(unsigned int i) const;

Returns the “raw” data in case you want to figure out yourself what bit is set (in
case you know what it stands for). The map needs 2 long words (64 bits) hence
one has to provide an argument to request the first or the second (i =0,1). The class
actually stores the data in the form of unsigned ints so that they may be stored in a
TTree (TBranch does not support ULong_t), but the interface effectively hides this
from the user.

int largest Gap(StDetectorld id) const;

Returns the largest gap in units of rows/layers in detector id. Please note, that
the method does not return a path length but an integer number representing the
maximum number of contiguous rows/layers without a hit. This is most useful for
the TPC and FTPC although the method will also work for the SVT. In case there
are less than 2 hits in total or in case something else is wrong the method returns
- 1 to indicate failure.

Example:
Assume a track has hits in row 24, 25, 26, 30, 35, 36, 38 the method will return 4

166

5 CLASS REFERENCES 5.100 StTrackTopologyMap

Global Operators

since the largest gap is formed by the missing rows 31, 32, 33, and 34. All other
gaps are smaller.

ost ream& operat or<< (ostream& os,
const St TrackTopol ogyMap& m ;
Prints the topology map mto output stream o0s, i.e. the whole bit pattern starting at
the least significant bit (0) up to bit 63.
Example:
cout << track->topol ogyMap() << endl;
prints
0000000000000000001011111111111111111111111111000011000000000000

167

5.101 StTrigger 5 CLASS REFERENCES

5101 StTrigger

Summary

Synopsis #i ncl ude "StTrigger.h"
class St Trigger;

Description

Related Classes

Public St Trigger();

Constructors St Tri gger (unsi gned short aw, unsigned short w);
Public Member unsi gned short triggerActi onwrd() const;
Functions unsi gned short triggerWrd() const;

voi d set Tri gger Acti onWr d(unsi gned short);
voi d set Tri gger Word(unsi gned short);

Public Member i nt operator==(const StTrigger& const;
Operator int operator!=(const StTrigger& const;

168

5 CLASS REFERENCES

5.102 StTrigger Data

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

Abstract base class to serve as interface for all trigger data starting Run 111 (2003).

#i ncl ude " St Tri gger Dat a. h"
class St TriggerData;

StTriggerData2003

St Tri ggerData() ;

virtual void dunp() const = O;
Dump data as text on screen.

virtual int year() const;
Year of the data.

virtual unsigned int version() const = 0;
TrgDataType Version Number.

virtual unsigned int nunber Of PreXing() const = O;
Number of pre-xing data for detectors.

virtual unsigned int nunber Of Post Xi ng() const = O;
Number of pre-xing data for detectors.

5.102 StTriggerData

\'
\'
\'
\'
\'
\'
\'
\'
\'
\'

rtual unsigned
rtual unsigned
rtual unsigned
rtual unsigned
rtual unsigned
rtual unsigned
rtual unsigned
rtual unsigned
rtual unsigned
rtual unsigned

vi rtual unsigned
vi rtual unsigned
vi rtual unsigned
vi rtual unsigned

vi rtual unsigned

vi rtual unsigned
mve(int sector, i

vi rtual unsigned
zdcUnAt t enuat ed(i

vi rtual unsigned

int token() const = 0;

int triggerwrd() const = 0;

int actionwrd() const = 0;

i nt busyStatus() const;

i nt bunchl d48Bit() const;

i nt bunchl d7Bit() const;

int spinBit() const;

short tcuBits() const;

short |astDSMint channel) const;
short vertexDSMint channel) const;
short ctblLayer1DSM i nt channel) const;
short ctblLayer2DSM i nt channel) const;
short entlLayer2DSM i nt channel) const;
short fpdLayer2DSM i nt channel) const;
short cthb(int pnt, int prepost=0) const;

short
nt prepost=0) const;

short
nt eastwest, int prepost=0) const;

short

zdcAttenuat ed(i nt eastwest, int prepost=0) const;

169

5.102 StTriggerData 5 CLASS REFERENCES

virtual unsigned short
zdcADC(i nt eastwest, int pnt, int prepost=0) const;

virtual unsigned short
zdcTDC(i nt eastwest, int prepost=0) const;

virtual unsigned short
bentHi ghTower (int eta, int phi, int prepost=0) const;

virtual unsigned short
bentJetPatch (int eta, int phi, int prepost=0) const;

virtual unsigned short
eencH ghTower (int eta, int phi, int prepost=0) const;

virtual unsigned short
eencJet Patch (int eta, int phi, int prepost=0) const;

virtual unsigned short
bbcADC(i nt eastwest, int pmt, int prepost=0) const;

virtual unsigned short
bbcTDC(i nt eastwest, int pnmt, int prepost=0) const;

virtual unsigned short
bbcADCSun(i nt eastwest, int prepost=0) const;

virtual unsigned short
bbcADCSuniar geTi |l e(i nt eastwest, int prepost=0) const;

virtual unsigned short
bbcEarliest TDC(i nt eastwest, int prepost=0) const;

virtual unsigned short bbcTi neDifference() const;

virtual unsigned short
fpd(int eastwest, int nodule, int pnt, int prepost=0) const;

virtual unsigned short
f pdSum(i nt eastwest, int nodul e) const;

virtual char* getTriggerStructure() = 0;

170

5 CLASS REFERENCES 5.103 StTriggerData2003

5.103 StTrigger Data2003

Summary

Synopsis

Description

Related Classes

Public
Constructors

Concrete class (inheriting from St Tr i gger Dat a) that contains the trigger data
information for Run 111 in 2003.

#i ncl ude "StTri gger Dat a2003. h"
class St TriggerDat a2003;

Users should not use this class but rather go through the abstract interface class
St Tri gger Dat a. Not all methods are listed here. Those inherited but not over-
written are only listed in the base class (see 5.102).

Inherits from St Tr i gger Dat a.

St Tri gger Dat a2003() ;

St Tri gger Dat a2003(char *) ;

St Tri gger Dat a2003(Tr gDat aType2003*) ;
voi d dunmp() const;

unsi gned int version() const;

unsi gned int number O PreXi ng() const;
unsi gned i nt number O Post Xi ng() const;
unsi gned int token() const;

[
[
i
[
unsigned int triggerWrd() const;
i
[
[
[

unsi gned int actionWrd() const;
unsi gned int bunchl d48Bit () const;
unsi gned int bunchld7Bit() const;
unsigned int spinBit() const;

unsi gned short ctb(int pnt, int prepost=0) const;
unsi gned short mac(int pnt, int prepost=0) const;

unsi gned short
bbcADC(i nt eastwest, int pmt, int prepost=0) const;

unsi gned short
bbcTDC(i nt eastwest, int pmt, int prepost=0) const;

unsi gned short
bbcADCSun(i nt eastwest, int prepost=0) const;

unsi gned short
bbcADCSum_ar geTi |l e(i nt eastwest, int prepost=0) const;

unsi gned short
bbcEarliest TDC(i nt eastwest, int prepost=0) const;

unsi gned short
bbcTi meDi f ference() const;

unsi gned short
fpd(int eastwest, int nodule, int pnt, int prepost=0) const;

171

5.103 StTriggerData2003 5 CLASS REFERENCES

unsi gned short
f pdSunm(i nt eastwest, int nodul e) const;

char* getTriggerStructure();
Tr gDat aType2003* get Tri gger Struct ure2003();
Experts only.

172

5 CLASS REFERENCES

5.104 StTriggerDetectorCollection

5.104 StTrigger Detector Collection

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

#i ncl ude "StTri gger Det ectorCol | ecti on. h"

class St TriggerDetectorCollection;

St Tri gger Det ect or Col | ection();
St Tri gger Det ect or Col | ecti on(const

St BbcTri gger Det ect or & bbc();
const StBbcTri ggerDetectoré& bbe()
St Ct bTri gger Detector & ctb();
const StCtbTriggerDetector& ctb()
St MreTri gger Det ect or & mac() ;
const St MacTri gger Det ect or & mac()
St VpdTri gger Det ect or & vpd();
const St VpdTri ggerDetector& vpd()
St ZdcTri gger Det ect or & zdc();
const St ZdcTri ggerDetector& zdc()
St EncTri gger Det ect or & enc();
const StEntTri ggerDetectoré& entc()

dst_TrgDet st&);

const;
const;
const;
const;
const;

const;

173

5.105 StTriggerld 5 CLASS REFERENCES

5105 StTriggerld

Summary

Synopsis #i ncl ude "StTriggerld.h"
class StTriggerld;

Description

Related Classes

Public St Triggerld();

Constructors

Public Member unsi gned int nmask() const;

Functions bool isTrigger(unsigned int id) const;

unsi gned int version(unsigned int id) const;

unsi gned i nt nameVersion(unsigned int id) const;

unsi gned int threshol dVersion(unsigned int id) const;
unsi gned int prescal eVersion(unsigned int id) const;
vector<unsigned int> triggerlds() const;

voi d set Mask(unsigned int);

voi d addTri gger (unsi gned int, unsigned int,

unsigned int, unsigned int, unsigned int);

174

5 CLASS REFERENCES

5.106 StTriggerldCollection

5.106 StTriggerlidCollection

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

Collection that holds all relevant trigger information starting Runlll (2003).

#i ncl

ude "StTriggerldCollection.h”

class StTriggerldCollection;

StTri

const
const
const
const

voi d
voi d
voi d
voi d

gger |l dCol l ection();

St Tri gger |l d* nom nal () const;
St Triggerld* [1() const;
St Triggerld* |2() const;
St Triggerld* [3() const;

set L1(StTriggerld*);
set L2(St Tri ggerld*);
set L3(St Triggerld*);
set Nom nal (St Tri ggerld*);

175

5.107 StV0Vertex

5 CLASS REFERENCES

5.107 StVOVertex

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

176

#i ncl ude " St VOVert ex. h"
cl ass St VOVertex;

St VOVertex();
St VOVertex(const dst_vertex_st& const dst_v0 vertex_ st&);

StVertexld type() const;

unsi gned i nt nunmber O Daught ers() const;

St Track* daught er (St Char geSi gn si gn);

const St Track* daughter (St ChargeSi gn sign) const;

St Track* daught er (unsi gned int);

const St Track* daughter(unsigned int) const;

St PtrVecTrack daughters(StTrackFilter&);

voi d addDaught er (St Track*);

voi d renmpoveDaught er (St Track*) ;

fl oat dcaDaught er ToPri maryVert ex(St ChargeSi gn si gn) const;
fl oat dcaDaughters() const;

fl oat dcaParent ToPri maryVertex() const;

const St ThreeVect or F& nmonent unt Daught er (St Char geSi gn si gn) const;
St Thr eeVect or F nonentum() const;

voi d set DcaDaught er ToPri mar yVert ex(St Char geSi gn, float);

voi d set Monent unOf Daught er (St Char geSi gn, const St ThreeVector F&) ;

5 CLASS REFERENCES 5.107 StVO0Vertex

voi d set DcaDaughters(float);

voi d set DcaParent ToPri maryVertex(fl oat);

177

5.108 StVertex

5 CLASS REFERENCES

5.108 StVertex

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

178

#i ncl ude " St Vertex. h"
cl ass St Vertex;

St Vertex();
St Vertex(const dst_vertex_st&);

StVertexld type() const = O;

int flag() const;

For primary vertex this indicates the fitting iteration and error reporting as follows.

+yx1 for normal, successfully found primary vertex during the 3rd iteration

-yx3 for initial seed value

-yx2 for first iteration value

-yx1 for second iteration value

-yx4 for failed fit with Determinant of G =0.0, occuring during any iteration.

-yx5 for failed error covariance matrix evaluation during fit with determinant of E
= 0.0, occuring during any iteration.

Definitions:

x is the event vertex id (for pileups). Zero means the triggered event vertex, x=1 is
the next one etc

y is the detector ID for prevertex finding only y=0 is not prevertex, y=1 TPC pre-
vertex, y=2 SVT, y=3 FTPC etc.

fl oat chi Squared() const;

Returns x2 per degree of freedom.

fl oat probChi Squared() const;
Upper tail probability of x2 distribution.

St Matri xF covariant Matri x() const;
St ThreeVect or F positionError() const;

St Track* parent();
const St Track* parent() const;
Return pointer to parent track.

unsi gned i nt nunmber O Daughters() const = O;

St Track* daughter(unsigned int i) = 0;
const St Track* daughter(unsigned int i) const = O;

5 CLASS REFERENCES

5.108 StVertex

Public Member
Operator

St PtrVecTrack daughters(StTrackFilter& = O;

voi d set Fl ag(unsigned int);

voi d set CovariantMatrix(float[6]);
voi d set Chi Squar ed(fl oat);

voi d set ProbChi Squared(fl oat);

voi d set Parent (St Track*);

voi d addDaught er (St Track*) = O;
voi d renoveDaught er (St Track*) = 0;

i nt operator==(const StVertex& const;
i nt operator!=(const StVertex& const;

179

5.109 StVpdTriggerDetector 5 CLASS REFERENCES

5.109 StVpdTrigger Detector

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

180

#i ncl ude " St VpdTri gger Det ector. h”
cl ass St VpdTri gger Det ect or;

St VpdTri gger Det ector () ;
St VpdTri gger Det ect or (const dst_TrgDet _st&);

unsi gned i nt nunber O VpdCount ers() const;
float adc(unsigned int) const;

float time(unsigned int) const;

float m ni munili me(St BeanDi r ecti on) const;
float vertexZ() const;

voi d set Adc(unsigned int, float);

voi d setTine(unsigned int, float);

voi d set M ni munili me(St BeanDi rection, float);
voi d setVertexZ(float);

5 CLASS REFERENCES 5110 StXiVertex

5110 StXiVertex

Summary

Synopsis #i ncl ude " St Xi Vertex. h"
cl ass St Xi Vert ex;

Description

Related Classes

Public St Xi Vertex();

Constructors St Xi Vertex(const dst_vertex_st& const dst_xi_vertex_st&);
Public Member StVertexld type() const;

Functions unsi gned i nt nunmber O Daught ers() const;

St Track* daught er (unsi gned int = 0);

const St Track* daughter(unsigned int = 0) const;
St Pt rVecTrack daughters(St TrackFilter&);

fl oat dcaBachel or ToPri maryVertex() const;

float dcaVOToPri maryVertex() const;

fl oat dcaDaughters() const;

fl oat dcaParent ToPri maryVertex() const;

const St ThreeVect or F& nmonent unt Bachel or () const;
St Thr eeVect or F noment umOf VO() const;

St ThreeVect or F moment unm() const;

St VOVer t ex* vOVertex() const;

St Track* bachel or () ;

doubl e chargeOf Bachel or () ;

voi d set DcaBachel or ToPri maryVertex(fl oat);

voi d set Monent untf Bachel or (const St ThreeVect or F&) ;
voi d set DcaDaughters(float);

voi d set DcaParent ToPri maryVertex(fl oat);

voi d set VOVertex(StVOVertex*);

voi d addDaught er (St Track*);

voi d renmpveDaught er (St Track*);

181

5.111 StZdcTriggerDetector 5 CLASS REFERENCES

5.111 StZdcTrigger Detector

Summary

Synopsis

Description
Related Classes

Public
Constructors

Public Member
Functions

182

Zero Degree Calorimeter (ZDC) data

#i ncl ude " St ZdcTri gger Det ector. h"
cl ass St zdcTri gger Det ect or;

St ZdcTri gger Det ect or () ;
St ZdcTri gger Det ect or (const dst_TrgDet _st&);

unsi gned int number Of ZdcWbr ds() const;
Currently, and probably for the rest of its lifetime, this method will return 16.

float adc(unsigned int) const;
The interpretation of the different ADC values can vary as a function of time. The
meaning of the various words (status Sep 2001) is as follows:

e unattenuated signals (mostly useful for looking at the single neutron peak)

adc[7] = ZDC East Module 1
adc[6] = ZDC East Module 2
adc[5] = ZDC East Module 3
adc[4] = ZDC East Sum

adc[3] = ZDC West Module 1
adc[2] = ZDC West Module 2
adc[1] = ZDC West Module 3
adc[0] = ZDC West Sum

e attenuated signals

adc[10] = ZDC West Attenuated Sum
adc[11] = ZDC West Module 2 Attenuated
adc[12] = ZDC West Module 1 Attenuated
adc[13] = ZDC East Attenuated Sum
adc[14] = ZDC East Module 2 Attenuated (until Aug 29, 2001)
adc[14] = East+West Attenuated Analog Sum (since Aug 29, 2001)
adc[15] = ZDC East Module 1 Attenuated
e other

adc[8] = TDC East (since run 2001)
adc[9] = TDC West (since run 2001)

The reason why there are only 2 single modules in the attenuated part is that we
don’t have enough ADC channels. However, the sum is however still the sum of all
3 channels per module. The most relevant are the sum channels.

float tdc(unsigned int) const;

fl oat adcSun{ St BeanDi recti on) const;
Sum for ZDC east and west.

5 CLASS REFERENCES 5.111 StZdcTriggerDetector

float adcSun() const;
Total ZDC sum.

float vertexZ() const;
Returns z position of vertex obtained from ZDC timing information.

voi d set Adc(unsigned int, float);

voi d set Tdc(unsigned int, float);

voi d set AdcSunm(St BeanDi rection, float);
voi d set AdcSunm(fl oat);

void setVertexZ(float);

183

A BRIEF INTRODUCTION TO UML

A Brief Introduction to UML

A.1 Introduction

UML stands for Unified Modelling Language. It is the current standard modelling language used to design
object oriented software. It is a unification of the concepts and notations used in earlier models such as
Booch and OMT.

Although the complexity and theoretical concept behind UML is certainly not of great use for most of the
developer and user of HENP software it provides one important component which is gaining more and more
importance: its notation, i.e., a set of rules on how to present complex software in form of simple graphic
symbols. There is a notation for static elements of a design such as classes, attributes, and relationships
and a notation for modelling the dynamic elements such as objects, messages, and, state machines. In this
appendix we present only the basic aspects of the static modelling notation — the class diagrams.

A.2 Classdiagrams

The purpose of a class diagram is to depict the classes within a model. In an object oriented application,
classes have attributes (member variables), operations (member functions) and relationships with other
classes.The fundamental element of the class diagram is an icon that represents a class. This icon is shown

Class

- attribute : type

+ operation(argname : argtype) : return type

Figure A.1: The class icon in UML.

in Fig. A.1. A class icon is simply a rectangle divided into three compartments. The topmost compartment
contains the name of the class. The middle compartment contains a list of attributes (member variables), and
the bottom compartment contains a list of operations (member functions). In many diagrams, the bottom
two compartments are omitted. Even when they are present, they typically do not show every attribute
and operations. The goal is to show only those attributes and operations that are useful for the particular
diagram. There is typically never a need to show every attribute and operation of a class on any diagram.
Fig. A.2 shows a typical UML description of a class that represents a Hit (here fictitious Hit2D). Notice

Hit2D

- mX : double
- mY : double
- mCharge : float

+ X() : double

+y() : double

+ charge() : float

+ distanceTo(h : Hit2D&) : double

Figure A.2: Hit2D class. Attributes and operations are shown.

that each member variable is followed by a colon and by the type of the variable. If the type is redundant,
or otherwise unnecessary, it can be omitted. Notice also that the return values follow the member functions

184

A BRIEF INTRODUCTION TO UML A.3 Composition Relationships

in a similar fashion. Again, these can be omitted. Finally, notice that the member function arguments also
have a name and type. Again one can omit the name or the arguments altogether.

At the beginning of each attribute and operations the visibility of the class is indicated through a simple
tag. UML provides three tags:

+ public
protected

— private

These abbreviations match exactly the three levels of visibility provided in C++. The class shown in
Fig. A.2 is then translated into C++ code as follows:

class Hit2D {

public:

doubl e x();

doubl e y();

doubl e di stanceTo(Hit2D& h);
private:

doubl e mX; n;
float ntCharge;

A.3 Composition Relationships

Each instance of type Hit usually contains an instance of type Position. One also says the Hit hasa Position.
This is a relationship known as composition. It can be depicted in UML using a class relationship. Fig. A.3
shows the composition relationship. The black diamond represents composition. It is placed on the Hit

Hit ® ~ Position

Figure A.3: Class Hit has a Position.

class because it is the Hit that is composed of (or has) a Position. The arrowhead on the other end of
the relationship denotes that the relationship is navigable in only one direction. That is, Position does not
know about Hit. In UML relationships are presumed to be bidirectional unless the arrowhead is present to
restrict them. Composition relationships are a strong form of containment or aggregation. Aggregation is a
whole/part relationship. In this case, Hit is the whole, and Position is part of Hit. However, composition is
more than just aggregation. Composition also indicates that the lifetime of Position is dependent upon Hit.
This means that if Hit is destroyed, Position will be destroyed with it. In C++ we would represent this as:

class Ht {
Posi ti on nPos;
}s

In this case we have represented the composition relationship as a member variable. We could also have
used a pointer so long as the destructor of Hit deleted the pointer. A more realistic example can be found
in StEvent. There the StHit class has a member of type StThreeVector which represents a position.

185

A.4 Inheritance A BRIEF INTRODUCTION TO UML

A.4 Inheritance

The inheritance relationship in UML is depicted by a triangular arrowhead which points to the base class.
One or more lines proceed from the base of the arrowhead connecting it to the derived classes.

Figure A.4: A subclass may inherit the structure and behaviour of its superclass.

Hit2D

- mX : double :
-mY : double Hit3D
- mCharge : float - mZ : double

+ X() : double + z() : double

+y() : double + distanceTo(h : Hit3D&) : double
+ charge() : float

+ distanceTo(h : Hit2D&) : double

Figure A.5: Inheritance.

Fig. A.5 shows the form of the inheritance relationship. In this diagram we see that Hit3D is derived from
Hit2D. If the name of a class would be shown in italics, it would indicate that the class is an abstract class.
Note also that operations shown in italics indicate that they are pure virtual. The corresponding C++ code
for the Hit3D class from Fig. A.5 would look like:

class Ht3D : public Ht2D {

public:

doubl e z();

doubl e di stanceTo(Hi t3D& h);
private:

doubl e ny;
b

186

A BRIEF INTRODUCTION TO UML A.5 Aggregation and Association

A.5 Aggregation and Association

The weak form of aggregation is denoted with an open diamond. This relationship denotes that the aggre-
gate class (the class with the white diamond touching it) is in some way the ”whole”, and the other class
in the relationship is somehow part” of that whole. Fig. A.6 shows an aggregation relationship. In this

Track * S Hit

Figure A.6: Aggregation.

case, the Track class contains many Hit instances. In UML the ends of a relationship are referred to as its
”roles”. Notice that the role at the Hit end of the aggregation is marked with a ”x”. This indicates that the
Track contains many Hit instances. The following Listing shows how Fig. A.6 might be implemented in
C++as:

class Track {

public:
...
private:

vector<Hi t*> nHits;

}s

There are other forms of containment that do not have whole/part implications. For example, each Vertex
refers back to its parent Track. This is not aggregation since it is not reasonable to consider a parent Track
to be part of a child Vertex. We use the association relationship to depict this.

Track Vertex

Figure A.7: Association.

Fig. A.7 shows how we draw an association. An association is nothing but a line drawn between the
participating classes. In Fig. A.7 the association has an arrowhead to denote that Track does not necessarily
know anything about Vertex. This relationship will almost certainly be implemented with a pointer of some
kind.

What is the difference between an aggregation and an association? Aggregation denotes whole/part rela-
tionships whereas associations do not. However, there is not likely to be much difference in the way that
the two relationships are implemented. That is, it would be very difficult to look at the code and determine
whether a particular relationship ought to be aggregation or association. Aggregation and Association both
correspond to the has-by-reference relationship.

A.6 Dependency
Sometimes the relationship between a two classes is very weak. They are not implemented with member
variables at all. Rather they might be implemented as member function arguments.

Consider, for example, the fit function of a TrackFitter class. Suppose that this function takes an argument
of type CalibrartionDB since it requires information from it (e.g. if the magnetic field was on or off) in order
to perform the fit. Fig. A.8 shows a dashed arrow between the TrackFitter class and the CalibrartionDB

187

A.6 Dependency A BRIEF INTRODUCTION TO UML

TrackFitter

CalibrationDB

Figure A.8: Dependency.

class. This is the dependency relationship. This is often called a using relationship. This relationship
simply means that TrackFitter somehow depends upon CalibrartionDB. In C++ this almost always results
in a #include:

#i ncl ude "CalibrartionDB. hh"
class TrackFitter {

public:

...

void fit(Calibrarti onDB &dlb);
private:

...
b

188

Index

Symbols

X 162,178
B

barrel, SVT ... 34
C

classdiagram...................ooiins 184
CoNStaNtS ... 3
CONtAINEr ... et 10
CONVENLIONS ...\ttt i i 6
D

degree of freedom 162,178
detectorstateciiiiiiiiat, 60
detectors ... 19
documentation................. oo, 15
doEvents.C............ccoiiiiiiininnt 14
E

EMC. ... 37
enumerations 3
eventheader..........................ot 16
BVENESUMMArYt 16
F

filter ... 28
flag() in StPrimaryVertex 108
flag() in StTrackt 158
foreignkey ...t 158
FTPChits ... 34
FTPC planesand sectors................... 34
functor........o 28
G

AP e 166
globaltracks........... ..o, 20
H

headerfiles................c .., 3
hitS . 32
|

iflag. ... 108, 158
iterators 10
L

L3Trigger ..o 40
ladder,SSD.........ccoviiiiii 35
ladder, SVT ... 34

largestgap. ... 166

layer, SVT ... 34
M

MINIDST ... e 48
mMiniDST, MDSTciii 77
N

notation. ... 184
P

PErsiSteNCe. . ..ot 9
PHMDo 38
Physics Summary Data (PSD).......... 74,110
PID algorithm, 28
planes. ... 34
POINtEIS . .\t 7
primary tracks ... 20
primary vertices, orderof............... 31,73
primary vertices, sorting 75
PSD . 74,110
R

references ... 7
RICH ... 38
ROOT ... 9,11
ROOTAfileS . ..o 14
root4staroc i, 14
FOWS oottt ettt e 33
S

SCL o 15
SECIOIS . o 33,34
software monitorsoei..n 17
1] 37
SSDhItS. .o 35
StAnalysisMaker.......................... 14
StarClassLibrary 6, 15
StBbcTriggerDetector 53
StCalibrationVertex........................ 54
StContainers........coovveiiiii i 55
StContainers.h......................oi.L. 10
StCthSoftwareMonitor..................... 56
StCtbTriggerDetector 57
StDedxPidTraitscoovveiiiint, 59
StDetectorld.hfile.......................... 3
StDetectorInfo............... ... 25
StDetectorState ..., 60
StEmcCluster.........ooviii i 61
StEmcClusterCollection 62
StEmcCollection.......................... 63

INDEX INDEX
StEmcDetector.. ...t 64 StRichMCInfo......................... .. 116
StEmcModule 65 StRichMCPixel 117
StEmcPoint...........c 66 StRichPid ... 118
StEmcRawHitl 67 StRichPidTraitsot 120
StEmcSoftwareMonitor.................... 68 StRichPixel......... ...t 122
StEmcTriggerDetector 70 StRichSoftwareMonitor................... 123
StEnumerations ... 69 StRichSpectraccovit 124
StEnumerations.hfile....................... 3 Stroustrup, Bjarne............ooo Ll 15
StEvent...........ociiiiiii 16,71 StRuninfo.............ol 72,126
StEventinfo................ ...l 72,76 StSoftwareMonitor....................... 128
StEventMaker.............ol 12,14 StSsdHit. 35,129
StEventScavanger.............cooviiiiinn.. 48 StSsdHitCollection....................... 130
StEventScavenger ..., 77 StSsdLadderHitCollection 131
StEventSummaryo.ou... 16, 78 StSsdWaferHitCollection 132
StEVeNtTYPeS .. .o 80 StSvtBarrelHitCollection 133
StEventTypes.hfile................... 3 StSvtHit 34,134
StFpdCollection.....................olt 81 StSvtHitCollection....................... 135
StHpcHit 34, 82 StSvtLadderHitCollection................. 136
StFtpcHitCollection 83 StSvtSoftwareMonitor.................... 137
StFtpcPlaneHitCollection 84 StSvtWaferHitCollection.................. 138
StFtpcSectorHitCollection 85 StTofCell 139
StFtpcSoftwareMonitor.................... 86 StTofCollection.......................... 140
StFunctional 87 StTofData........coovvviiii e 141
StGlobalSoftwareMonitor.................. 88 StTofHit. ... 142
StGlobalTrack ..., 89 StTofMCCell 143
StHelixModel........................oool 90 StTOfMCHit. ... 144
StHit. ..o 91 StTofMCInfo...........ooooii L, 145
StKinkMVertex. ...t 31,92 StTofMCSlatt 146
StLOTrIgger ..o 93 StTofPidTraitscovet.t. 147
StLATHQEr « e 94 StTofSlat. ... 148
StL3Algorithminfo........................ 95 StTofSoftwareMonitor.................... 149
StL3EventSummary ..., 96 StTpcDedxPidAlgorithm 31, 150
StL3SoftwareMonitor 97 StTpcHit. ... 33,151
StL3Trigger ..o 98 StTpcHitCollection....................... 152
StMeasuredPoint................ 31, 32, 36, 99 StTpcPadrowHitCollection................ 153
StMwcTriggerDetector 100 StTpePixel ... 154
StParticleDefinition........................ 28 StTpcSectorHitCollection................. 155
StPhmdCluster.................oooviinn 101 StTpcSoftwareMonitor 156
StPhmdClusterCollection 102 StTptTrack ... 157
StPhmdCollection........................ 103 SETrack . ..o 158
StPhmdDetector ...t 104 StTrackDetectorInfo...................... 160
StPhmdHit ... 105 StTrackFitTraitsoovvnens, 25, 162
StPhmdModule ...l 106 StTrackGeometry..................... 23,163
StPidAlgorithm and examples 28 StTrackNode......................... 25, 164
StPidTraits 25 StTrackPidTraits......................o.. 165
StPrimaryTrack ...t 107 StTrackTopologyMap........ 25, 160, 161, 166
StPrimaryVertex 31,108 StTrigger. ..o 168
StPSd .o 110 StTriggerDatacovvivinnn, 169
StRichCluster. ...t 111 StTriggerData2003.................oo.et. 171
StRichCollection......................... 112 StTriggerDetectorCollection 173
StRichHit 113 StTriggerld............oviiii 174
StRiIChMCHit..............., 115 StTriggerldCollection 175

190

INDEX

INDEX

StVOVertexooviii 31,176
StVerteX ... 31,178
StVertexld.hfile............................ 3
StVpdTriggerDetector 180
SEXIVEMEX . ..o 31,181
StZdcTriggerDetector 182
SVThits ... 34
systemofunits....................ooL 7
T

TPChits. ..o 33
TPCsectorsand rows............ccoovvennnn 33
TPTtracks.oovviiiii i 25
tracknode...........cooiiiiiii i 21
track qualityflag......................... 158
tracksS ... 20
trgger ..o 19
U

UML ..o 1,184
UNIES .o 7
\Y/

vertexflags..............oooo L 178
VEIICES . e 31
W

wafer,SSD ... 35
wafer, SVT ... 34
X

XDFAfiles. ..o 14

191

	Introduction
	I User Guide
	Basics
	Header Files
	Enumerations and Constants
	Conventions
	Numbering Scheme
	References and Pointers
	Units

	Persistence and ROOT
	Container and Iterators
	Getting StEvent: The StEventMaker
	A Standard Example: doEvents.C and StAnalysisMaker
	Further Documentation

	The StEvent Model
	Event Header
	Software Monitors
	Trigger and Trigger Detectors
	Tracks
	Introduction to Tracks
	The Concept of the Track Node
	Detector Information
	The Track Classes
	TPT Tracks
	PID Traits
	PID Algorithm, Filters and Functors

	Vertices
	Hits
	TPC hits
	FTPC hits
	SVT hits
	SSD hits

	Remarks on Hits and Vertices
	The EMC
	The PHMD
	The RICH
	The L3 Trigger
	Event Summary Information
	Algorithm Information

	Writing MiniDSTs using StEvent
	The StEventScavanger class
	An Example: StMiniDstMaker
	Advanced features
	Using Zombies
	Adding user defined classes

	II Reference Manual
	Class References
	StBbcTriggerDetector
	StCalibrationVertex
	StContainers
	StCtbSoftwareMonitor
	StCtbTriggerDetector
	StDedxPidTraits
	StDetectorState
	StEmcCluster
	StEmcClusterCollection
	StEmcCollection
	StEmcDetector
	StEmcModule
	StEmcPoint
	StEmcRawHit
	StEmcSoftwareMonitor
	StEnumerations
	StEmcTriggerDetector
	StEvent
	StEventInfo
	StEventScavenger
	StEventSummary
	StEventTypes
	StFpdCollection
	StFtpcHit
	StFtpcHitCollection
	StFtpcPlaneHitCollection
	StFtpcSectorHitCollection
	StFtpcSoftwareMonitor
	StFunctional
	StGlobalSoftwareMonitor
	StGlobalTrack
	StHelixModel
	StHit
	StKinkVertex
	StL0Trigger
	StL1Trigger
	StL3AlgorithmInfo
	StL3EventSummary
	StL3SoftwareMonitor
	StL3Trigger
	StMeasuredPoint
	StMwcTriggerDetector
	StPhmdCluster
	StPhmdClusterCollection
	StPhmdCollection
	StPhmdDetector
	StPhmdHit
	StPhmdModule
	StPrimaryTrack
	StPrimaryVertex
	StPsd
	StRichCluster
	StRichCollection
	StRichHit
	StRichMCHit
	StRichMCInfo
	StRichMCPixel
	StRichPid
	StRichPidTraits
	StRichPixel
	StRichSoftwareMonitor
	StRichSpectra
	StRunInfo
	StSoftwareMonitor
	StSsdHit
	StSsdHitCollection
	StSsdLadderHitCollection
	StSsdWaferHitCollection
	StSvtBarrelHitCollection
	StSvtHit
	StSvtHitCollection
	StSvtLadderHitCollection
	StSvtSoftwareMonitor
	StSvtWaferHitCollection
	StTofCell
	StTofCollection
	StTofData
	StTofHit
	StTofMCCell
	StTofMCHit
	StTofMCInfo
	StTofMCSlat
	StTofPidTraits
	StTofSlat
	StTofSoftwareMonitor
	StTpcDedxPidAlgorithm
	StTpcHit
	StTpcHitCollection
	StTpcPadrowHitCollection
	StTpcPixel
	StTpcSectorHitCollection
	StTpcSoftwareMonitor
	StTptTrack
	StTrack
	StTrackDetectorInfo
	StTrackFitTraits
	StTrackGeometry
	StTrackNode
	StTrackPidTraits
	StTrackTopologyMap
	StTrigger
	StTriggerData
	StTriggerData2003
	StTriggerDetectorCollection
	StTriggerId
	StTriggerIdCollection
	StV0Vertex
	StVertex
	StVpdTriggerDetector
	StXiVertex
	StZdcTriggerDetector

	Brief Introduction to UML
	Introduction
	Class diagrams
	Composition Relationships
	Inheritance
	Aggregation and Association
	Dependency

